Current Forestry Reports

, Volume 3, Issue 3, pp 223–243 | Cite as

Tree Diversity Drives Forest Stand Resistance to Natural Disturbances

  • Hervé Jactel
  • Jürgen Bauhus
  • Johanna Boberg
  • Damien Bonal
  • Bastien Castagneyrol
  • Barry Gardiner
  • Jose Ramon Gonzalez-Olabarria
  • Julia Koricheva
  • Nicolas Meurisse
  • Eckehard G. Brockerhoff
Forest Entomology (E Brockerhoff, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Forest Entomology

Abstract

Purpose of review

Forests are frequently exposed to natural disturbances, which are likely to increase with global change, and may jeopardize the delivery of ecosystem services. Mixed-species forests have often been shown to be more productive than monocultures, but it is unclear whether this results from mixed stands being in part more resistant to various biotic and abiotic disturbance factors. This review investigates the relationships between tree diversity and stand resistance to natural disturbances and explores the ecological mechanisms behind the observed relationships.

Recent findings

Mixed forests appear to be more resistant than monocultures to small mammalian herbivores, soil-borne fungal diseases and specialized insect herbivores. Admixing broadleaves to conifers also increases the resistance to fire and windstorms when compared to pure conifer stands. However, mixed forests may be more affected by drought depending on the species in the mixture.

Summary

Overall, our findings suggest that mixed forests are more resistant to natural disturbances that are relatively small-scale and selective in their effect. However, benefits provided by mixtures are less evident for larger-scale disturbances. Higher tree diversity translates into increased resistance to disturbances as a result of ecological trait complementarity among species, reduction of fuel and food resources for herbivores, enhancement of diversion or disruption processes, and multi-trophic interactions such as predation or symbiosis.

To promote resistance, the selection of tree species with different functional characteristics appears more important than increasing only the number of species in the stand. Trees with different levels of susceptibility to different hazards should be intermixed in order to reduce the amount of exposed resources and to generate barriers against contagion.

However, more research is needed to further improve associational resistance in mixed forests, through a better understanding of the most relevant spatial and temporal scales of species interactions and to optimize the overall provision of ecosystem services.

Keywords

Associational resistance Associational susceptibility Biodiversity Drought Ecosystem services Fire Fungal pathogens Insect herbivores Invasive species Mammalian browsers Wind 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Attiwill PM. The disturbance of forest ecosystems: the ecological basis for conservative management. For Ecol Manag. 1994;63:247–300.CrossRefGoogle Scholar
  2. 2.
    Ulanova NG. The effects of windthrow on forests at different spatial scales: a review. For Ecol Manag. 2000;135:155–67.CrossRefGoogle Scholar
  3. 3.
    Bond W, Keeley J. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol. 2005;20:387–94.CrossRefGoogle Scholar
  4. 4.
    Johnson EA, Miyanishi K, editors. Plant disturbance ecology: the processes and the response. 1st ed. Burlington: Academic Press; 2007.Google Scholar
  5. 5.
    Trumbore S, Brando P, Hartmann H. Forest health and global change. Science. 2015;349:814–8.CrossRefGoogle Scholar
  6. 6.
    Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B. Planted forest health: the need for a global strategy. Science. 2015;349:832–6.CrossRefGoogle Scholar
  7. 7.
    Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ. The consequence of tree pests and diseases for ecosystem services. Science. 2013;342:1235773.CrossRefGoogle Scholar
  8. 8.
    Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci. 2006;63:625–44.CrossRefGoogle Scholar
  9. 9.
    McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 2008;178:719–39.CrossRefGoogle Scholar
  10. 10.
    Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259:660–84.CrossRefGoogle Scholar
  11. 11.
    Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, et al. Changes in planted forests and future global implications. For Ecol Manag. 2015;352:57–67.CrossRefGoogle Scholar
  12. 12.
    Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll B. In: Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll B, editors. Living with storm damage to forests: what science can tell us. Joensuu: European Forest Institute; 2013.Google Scholar
  13. 13.
    Stanturf JA, Goodrick SL, Outcalt KW. Disturbance and coastal forests: a strategic approach to forest management in hurricane impact zones. For Ecol Manag. 2007;250:119–35.CrossRefGoogle Scholar
  14. 14.
    Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P. Global estimation of burned area using MODIS active fire observations. Atmospheric Chem Phys. 2006;6:957–74.CrossRefGoogle Scholar
  15. 15.
    Williams J. Exploring the onset of high-impact mega-fires through a forest land management prism. For Ecol Manag. 2013;294:4–10.CrossRefGoogle Scholar
  16. 16.
    Goldammer JG, Statheropoulos M, Andreae MO. Chapter 1 Impacts of vegetation fire emissions on the environment, human health, and security: a global perspective. Dev Environ Sci. 2008;3–36.Google Scholar
  17. 17.
    Selkimäki M, González-Olabarria JR, Pukkala T. Site and stand characteristics related to surface erosion occurrence in forests of Catalonia (Spain). Eur J For Res. 2012;131:727–38.CrossRefGoogle Scholar
  18. 18.
    Gill RMA, Beardall V. The impact of deer on woodlands: the effects of browsing and seed dispersal on vegetation structure and composition. For Int J For Res. 2001;74:209–18.Google Scholar
  19. 19.
    van Lierop P, Lindquist E, Sathyapala S, Franceschini G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For Ecol Manag. 2015;352:78–88.CrossRefGoogle Scholar
  20. 20.
    Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008;452:987–90.CrossRefGoogle Scholar
  21. 21.
    Ayres MP, Lombardero MJ. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ. 2000;262:263–86.CrossRefGoogle Scholar
  22. 22.
    Woodward S, Stenlid J, Karjalainen R, Hüttermann A. Preface. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A, editors. Heterobasidion Annosum Biol. Ecol. Impact Control. Wallingford: CABI; 1998. p. xi–xii.Google Scholar
  23. 23.
    Ehrenfeld JG. Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst. 2010;41:59–80.CrossRefGoogle Scholar
  24. 24.
    Santini A, Ghelardini L, de Pace C, Desprez-Loustau M-L, Capretti P, Chandelier A, et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 2013;197:238–50.CrossRefGoogle Scholar
  25. 25.
    Ramsfield TD, Bentz BJ, Faccoli M, Jactel H, Brockerhoff EG. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry. 2016;cpw018.Google Scholar
  26. 26.
    Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, et al. Economic impacts of non-native forest insects in the continental United States. Gratwicke B, editor. PLoS One 2011;6:1–7.Google Scholar
  27. 27.
    Shearer BL, Crane CE, Barrett S, Cochrane A. Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia. Aust J Bot. 2007;55:225–38.CrossRefGoogle Scholar
  28. 28.
    Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015;349:823–6.CrossRefGoogle Scholar
  29. 29.
    Dai A, Trenberth KE, Qian T. A global dataset of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol. 2004;5:1117–30.CrossRefGoogle Scholar
  30. 30.
    Blenkinsop S, Fowler HJ. Changes in European drought characteristics projected by the PRUDENCE regional climate models. Int J Climatol. 2007;27:1595–610.CrossRefGoogle Scholar
  31. 31.
    Cayan DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunov A. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci. 2010;107:21271–6.CrossRefGoogle Scholar
  32. 32.
    Planton S, Déqué M, Chauvin F, Terray L. Expected impacts of climate change on extreme climate events. Comptes Rendus Geosci. 2008;340:564–74.CrossRefGoogle Scholar
  33. 33.
    Lindner M, Rummukainen M. Climate change and storm damage risk in European forests. In: Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll B, editors. What Science Can Tell Us (3) Joensuu: European Forest Institute; 2013. p. 207–14.Google Scholar
  34. 34.
    Herawati H, González-Olabarria J, Wijaya A, Martius C, Purnomo H, Andriani R. Tools for assessing the impacts of climate variability and change on wildfire regimes in forests. Forests. 2015;6:1476–99.CrossRefGoogle Scholar
  35. 35.
    Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, et al. Climate change and forest disturbances. Bioscience. 2001;51:723–34.CrossRefGoogle Scholar
  36. 36.
    Pechony O, Shindell DT. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci. 2010;107:19167–70.CrossRefGoogle Scholar
  37. 37.
    Lavsund S, Nygrén T, Solberg EJ. Status of moose populations and challenges to moose management in Fennoscandia. Alces. 2003;30.Google Scholar
  38. 38.
    Woods A, Martín-García J, Bulman L, Vasconcelos M, Boberg J, La Porta N, et al. Dothistroma needle blight, weather and possible climatic triggers for the disease’s recent emergence. For Pathol. 2016.Google Scholar
  39. 39.
    Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D, Battisti A, et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Change Biol. 2012;18:267–76.CrossRefGoogle Scholar
  40. 40.
    Robinet C, Roques A. Direct impacts of recent climate warming on insect populations. Integr Zool. 2010;5:132–42.CrossRefGoogle Scholar
  41. 41.
    Wolf A, Kozlov MV, Callaghan TV. Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Clim Chang. 2008;87:91–106.CrossRefGoogle Scholar
  42. 42.
    Klapwijk MJ, Ayres MP, Battisti A, Larsson S. Assessing the impact of climate change on outbreak potential. In: Barbosa P, Letourneau DK, Agrawal AA, editors. Insect outbreaks revisit. John Wiley & Sons, Ltd; 2012. p. 429–50.Google Scholar
  43. 43.
    Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl. 2005;15:2084–96.CrossRefGoogle Scholar
  44. 44.
    Desprez-Loustau M-L, Marcais B, Nageleisen L-M, Piou D, Vannini A. Interactive effects of drought and pathogens in forest trees. Ann For Sci. 2006;63:597–612.CrossRefGoogle Scholar
  45. 45.
    Redondo MA, Boberg J, Olsson CHB, Oliva J. Winter conditions correlate with Phytophthora alni subspecies distribution in Southern Sweden. Phytopathology. 2015;105:1191–7.CrossRefGoogle Scholar
  46. 46.
    Watt MS, Ganley RJ, Kriticos DJ, Manning LK. Dothistroma needle blight and pitch canker: the current and future potential distribution of two important diseases of Pinus species. Can J For Res. 2011;41:412–24.CrossRefGoogle Scholar
  47. 47.
    Loo J. Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions. 2009;11:81–96.CrossRefGoogle Scholar
  48. 48.
    Aukema JE, McCullough DG, Holle BV, Liebhold AM, Britton K, Frankel SJ. Historical accumulation of nonindigenous forest pests in the Continental United States. Bioscience. 2010;60:886–97.CrossRefGoogle Scholar
  49. 49.
    Hulme PE. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol. 2009;46:10–8.CrossRefGoogle Scholar
  50. 50.
    Leung B, Springborn MR, Turner JA, Brockerhoff EG. Pathway-level risk analysis: the net present value of an invasive species policy in the US. Front Ecol Environ. 2014;12:273–9.CrossRefGoogle Scholar
  51. 51.
    Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F. Will climate change promote future invasions? Glob Change Biol. 2013;19:3740–8.CrossRefGoogle Scholar
  52. 52.
    Siegert NW, McCullough DG, Liebhold AM, Telewski FW. Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers Distrib. 2014;20:847–58.CrossRefGoogle Scholar
  53. 53.
    Allen CD. Interactions across spatial scales among forest dieback, fire, and erosion in Northern New Mexico landscapes. Ecosystems. 2007;10:797–808.CrossRefGoogle Scholar
  54. 54.
    Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, et al. Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci U S A. 2005;102:15144–8.CrossRefGoogle Scholar
  55. 55.
    Netherer S, Schopf A. Potential effects of climate change on insect herbivores in European forests—general aspects and the pine processionary moth as specific example. For Ecol Manag. 2010;259:831–8.CrossRefGoogle Scholar
  56. 56.
    Moore B, Allard G. Climate change impacts on forest health. For Health Biosecurity Work. Pap. FAO; 2008.Google Scholar
  57. 57.
    Oliva J, Stenlid J, Martínez-Vilalta J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 2014;203:1028–35.CrossRefGoogle Scholar
  58. 58.
    Santoro AE, Lombardero MJ, Ayres MP, Ruel JJ. Interactions between fire and bark beetles in an old growth pine forest. For Ecol Manag. 2001;144:245–54.CrossRefGoogle Scholar
  59. 59.
    Stadelmann G, Bugmann H, Meier F, Wermelinger B, Bigler C. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For. Ecol Manag. 2013;305:273–81.CrossRefGoogle Scholar
  60. 60.
    Woodall CW, Nagel LM. Downed woody fuel loading dynamics of a large-scale blowdown in northern Minnesota, USA. For Ecol Manag. 2007;247:194–9.CrossRefGoogle Scholar
  61. 61.
    Shibata E, Torazawa Y. Effects of bark stripping by sika deer, Cervus nippon, on wind damage to coniferous trees in subalpine forest of central Japan. J For Res. 2008;13:296–301.CrossRefGoogle Scholar
  62. 62.
    Szewczyk W. Occurrence of Heterobasidion annosum (Fr.) Bref. in the roots of blown down trees in Scots pine stands growing on post-agricultural soil of the experimental forest district Zielonka. Zielonka Acta Sci Pol Silv Colendar Rat Ind Lignar. 2007;89–95.Google Scholar
  63. 63.
    Jactel H, Nicoll BC, Branco M, Ramon Gonzalez-Olabarria J, Grodzki W, Langstrom B, et al. The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci. 2009;66:701.CrossRefGoogle Scholar
  64. 64.
    Klapwijk MJ, Bylund H, Schroeder M, Björkman C. Forest management and natural biocontrol of insect pests. For Int J For Res. 2016;89:253–62.Google Scholar
  65. 65.
    Sohn JA, Saha S, Bauhus J. Potential of forest thinning to mitigate drought stress: a meta-analysis. For Ecol Manag. 2016;380:261–73.CrossRefGoogle Scholar
  66. 66.
    Fettig CJ, Klepzig KD, Billings RF, Munson AS, Nebeker TE, Negrón JF, et al. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For Ecol Manag. 2007;238:24–53.CrossRefGoogle Scholar
  67. 67.
    Niemelä P, Lindgren M, Uotila A. The effect of stand density on the susceptibility of Pinus sylvestris to Gremmeniella abietina. Scand J For Res. 1992;7:129–33.CrossRefGoogle Scholar
  68. 68.
    Régolini M, Castagneyrol B, Dulaurent-Mercadal A-M, Piou D, Samalens J-C, Jactel H. Effect of host tree density and apparency on the probability of attack by the pine processionary moth. For Ecol Manag. 2014;334:185–92.CrossRefGoogle Scholar
  69. 69.
    Thor M, Stenlid J. Heterobasidion annosum infection of Picea abies following manual or mechanized stump treatment. Scand J For Res. 2005;20:154–64.CrossRefGoogle Scholar
  70. 70.
    Cremer KW, Borough CJ, McKinnell FH, Carter PR. Effects of stocking and thinning on wind damage in plantations. N Z J For Sci. 1982;12:224–68.Google Scholar
  71. 71.
    Gamfeldt L, Snall T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun. 2013;4:1340.CrossRefGoogle Scholar
  72. 72.
    van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat Commun. 2016;7:11109.CrossRefGoogle Scholar
  73. 73.
    Jactel H, Brockerhoff E, Duelli P. A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In: SchererLorenzen M, Korner C, Schulze ED, editors. Forest diversity and function. Springer Berlin Heidelberg; 2005. p. 235–62. Google Scholar
  74. 74.
    Pautasso M, Holdenrieder O, Stenlid J. Susceptibility to fungal pathogens of forests differing in tree diversity. In: Scherer-Lorenzen M, Körner C, Schulze E-D, editors. Forest diversity and function. Springer Berlin Heidelberg; 2005. p. 263–89.Google Scholar
  75. 75.
    Root RB. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr. 1973;43:95–124.CrossRefGoogle Scholar
  76. 76.
    Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst. 2009;40:1–20.CrossRefGoogle Scholar
  77. 77.
    Jactel H, Brockerhoff EG. Tree diversity reduces herbivory by forest insects. Ecol Lett. 2007;10:835–48.CrossRefGoogle Scholar
  78. 78.
    Hjältén J, Danell K, Lundberg P. Herbivore avoidance by association: vole and hare utilization of woody plants. Oikos. 1993;68:125–31.CrossRefGoogle Scholar
  79. 79.
    Vehviläinen H, Koricheva J. Moose and vole browsing patterns in experimentally assembled pure and mixed forest stands. Ecography. 2006;29:497–506.CrossRefGoogle Scholar
  80. 80.
    Hantsch L, Braun U, Scherer-Lorenzen M, Bruelheide H. Species richness and species identity effects on occurrence of foliar fungal pathogens in a tree diversity experiment. Ecosphere. 2013;4:art81.CrossRefGoogle Scholar
  81. 81.
    Hantsch L, Bien S, Radatz S, Braun U, Auge H, Bruelheide H. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation. J Ecol. 2014;102:1673–87.CrossRefGoogle Scholar
  82. 82.
    • Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Chećko E, et al. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci. 2014;111:14812–5. Climate change may induce extreme drought events in the future. This article shows that mixed species forests are more resistant to drought than pure stands in some European forest types only. Managing forest ecosystems for high tree species diversity alone does not necessarily ensure forest adaptability to possible future severe drought events.CrossRefGoogle Scholar
  83. 83.
    Kunert N, Schwendenmann L, Potvin C, Hölscher D. Tree diversity enhances tree transpiration in a Panamanian forest plantation. J Appl Ecol. 2012;49:135–44.CrossRefGoogle Scholar
  84. 84.
    Kunert N, Cárdenas AM. Are mixed tropical tree plantations more resistant to drought than monocultures? Forests. 2015;6:2029–46.CrossRefGoogle Scholar
  85. 85.
    Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D. Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology. 2015;8:1–12.CrossRefGoogle Scholar
  86. 86.
    Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE. Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For Ecol Manag. 2010;259:1761–70.CrossRefGoogle Scholar
  87. 87.
    Gebauer T, Horna V, Leuschner C. Canopy transpiration of pure and mixed forest stands with variable abundance of European beech. J Hydrol. 2012;442–443:2–14.CrossRefGoogle Scholar
  88. 88.
    Grossiord C, Gessler A, Granier A, Berger S, Bréchet C, Hentschel R, et al. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. J Hydrol. 2014;519, Part D:3511–9.CrossRefGoogle Scholar
  89. 89.
    Forrester DI. Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol. 2015;35:289–304.CrossRefGoogle Scholar
  90. 90.
    Grossiord C, Gessler A, Granier A, Pollastrini M, Bussotti F, Bonal D. Interspecific competition influences the response of oak transpiration to increasing drought stress in a mixed Mediterranean forest. For Ecol Manag. 2014;318:54–61.CrossRefGoogle Scholar
  91. 91.
    Grossiord C, Forner A, Gessler A, Granier A, Pollastrini M, Valladares F, et al. Influence of species interactions on transpiration of Mediterranean tree species during a summer drought. Eur J For Res. 2015;134:365–76.CrossRefGoogle Scholar
  92. 92.
    Grossiord C, Granier A, Gessler A, Jucker T, Bonal D. Does drought influence the relationship between biodiversity and ecosystem functioning in boreal forests? Ecosystems. 2014;17:394–404.CrossRefGoogle Scholar
  93. 93.
    Lebourgeois F, Gomez N, Pinto P, Mérian P. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manag. 2013;303:61–71.CrossRefGoogle Scholar
  94. 94.
    Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. 2013;15:483–95.CrossRefGoogle Scholar
  95. 95.
    Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze E-D, et al. Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Change Biol. 2016;22:903–20.CrossRefGoogle Scholar
  96. 96.
    Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P. Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. For Ecol Manag. 2015;339:22–33.CrossRefGoogle Scholar
  97. 97.
    Jucker T, Bouriaud O, Avacaritei D, Coomes DA. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett. 2014;17:1560–9.CrossRefGoogle Scholar
  98. 98.
    Lübbe T, Schuldt B, Leuschner C. Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions. Front Plant Sci. 2015;6:857.Google Scholar
  99. 99.
    Forrester DI, Bonal D, Dawud S, Gessler A, Granier A, Pollastrini M, et al. Drought responses by individual tree species are not often correlated with tree species diversity in European forests. J Appl Ecol. 2016;53:1725–34.CrossRefGoogle Scholar
  100. 100.
    Zhang Y, Chen HYH, Reich PB. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol. 2012;100:742–9.CrossRefGoogle Scholar
  101. 101.
    Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol. 2002;113:97–120.CrossRefGoogle Scholar
  102. 102.
    Catry FX, Rego F, Moreira F, Fernandes PM, Pausas JG. Post-fire tree mortality in mixed forests of central Portugal. For Ecol Manag. 2010;260:1184–92.CrossRefGoogle Scholar
  103. 103.
    Dickinson MB, Johnson EA. Temperature-dependent rate models of vascular cambium cell mortality. Can J For Res. 2004;34:546–59.CrossRefGoogle Scholar
  104. 104.
    Michaletz ST, Johnson EA. How forest fires kill trees: a review of the fundamental biophysical processes. Scand J For Res. 2007;22:500–15.CrossRefGoogle Scholar
  105. 105.
    Bond WJ, van Wilgen BW. Why and how do ecosystems burn? In Fire and plants. Dordrecht: Springer Netherlands; 1996. p. 16–33.Google Scholar
  106. 106.
    Ormeño E, Céspedes B, Sánchez IA, Velasco-García A, Moreno JM, Fernandez C, et al. The relationship between terpenes and flammability of leaf litter. For Ecol Manag. 2009;257:471–82.CrossRefGoogle Scholar
  107. 107.
    Moreira F, Rego FC, Ferreira PG. Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol. 2001;16:557–67.CrossRefGoogle Scholar
  108. 108.
    Hély C, Bergeron Y, Flannigan MD. Effects of stand composition on fire hazard in mixed-wood Canadian boreal forest. J Veg Sci. 2000;11:813–24.CrossRefGoogle Scholar
  109. 109.
    Hély C, Flannigan M, Bergeron Y, McRae D. Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can J For Res. 2001;31:430–41.CrossRefGoogle Scholar
  110. 110.
    Fernandes PM. Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 2009;66:415–415.Google Scholar
  111. 111.
    Kafka V, Gauthier S, Bergeron Y. Fire impacts and crowning in the boreal forest: study of a large wildfire in western Quebec. Int J Wildland Fire. 2001;10:119–27.CrossRefGoogle Scholar
  112. 112.
    Wang G. Fire severity in relation to canopy composition within burned boreal mixedwood stands. For Ecol Manag. 2002;163:85–92.CrossRefGoogle Scholar
  113. 113.
    González JR, Palahí M, Trasobares A, Pukkala T. A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci. 2006;63:169–76.CrossRefGoogle Scholar
  114. 114.
    González JR, Pukkala T. Characterization of forest fires in Catalonia (north-east Spain). Eur J For Res. 2007;126:421–9.CrossRefGoogle Scholar
  115. 115.
    Silva JS, Moreira F, Vaz P, Catry F, Godinho-Ferreira P. Assessing the relative fire proneness of different forest types in Portugal. Plant Biosyst. - Int. J. Deal. Asp. Plant Biol. 2009;143:597–608.Google Scholar
  116. 116.
    Garcia-Gonzalo J, Zubizarreta-Gerendiain A, Ricardo A, Marques S, Botequim B, Borges JG, et al. Modelling wildfire risk in pure and mixed forest stands in Portugal. Allg Forst Jagdztg 2012;238–48.Google Scholar
  117. 117.
    •• González JR, Trasobares A, Palahí M, Pukkala T. Predicting stand damage and tree survival in burned forests in Catalonia (North-East Spain). Ann For Sci. 2007;64:733–42. This is the first empirical study where forest composition at stand level is considered as a variable for predicting the resistance to fire damage. Based on the survey of over 700 forest stands affected by fire, it shows how mixed or broadleaved dominated stands are more resistant to fire.CrossRefGoogle Scholar
  118. 118.
    de Magalhães RMQ, Schwilk DW. Leaf traits and litter flammability: evidence for non-additive mixture effects in a temperate forest: non-additive effects in litter flammability. J Ecol. 2012;100:1153–63.CrossRefGoogle Scholar
  119. 119.
    Van Altena C, van Logtestijn R, Cornwell W, Cornelissen H. Species composition and fire: non-additive mixture effects on ground fuel flammability. Front Plant Sci. 2012;3:63.Google Scholar
  120. 120.
    Cooper-Ellis S, Foster DR, Carlton G, Lezberg A. Forest response to catastrophic wind: results from an experimental hurricane. Ecology. 1999;80:2683–96.CrossRefGoogle Scholar
  121. 121.
    •• Griess VC, Knoke T. Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res. 2011;41:1141–59. This is the first systematic meta-analysis of the influence of mixed species stands on the resistance to wind damage. They show that mixed species stands have a clear benefit in reducing the risk of wind damage. This benefit has been proposed widely for many years but has proven very difficult to prove.CrossRefGoogle Scholar
  122. 122.
    Hanewinkel M, Albrecht A, Schmidt M. Influence of stand characteristics and landscape structure on wind damage. In: Gardiner B, Schuck A, Schelhaas M, Orazio C, Blennow K, Nicoll B, editors. Living Storm Damage For. What Sci. Can Tell Us. 3rd ed. European Forest Institute; 2013. p. 41–7.Google Scholar
  123. 123.
    Mason B, Valinger E. Managing forests to reduce storm damage. In: Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll B, editors. Living Storm Damage For. What Sci. Can Tell Us. European Forest Institute; 2013. p. 89–98.Google Scholar
  124. 124.
    Knoke T, Ammer C, Stimm B, Mosandl R. Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res. 2008;127:89–101.CrossRefGoogle Scholar
  125. 125.
    Dhôte J. Implication of forest diversity in resistance to strong winds. In: Scherer-Lorenzen M, Korner C, Schulze E-D, editors. Ecol. Stud. Vol 76 for. Divers. Funct. Temp. Boreal Syst 2005;176:291–307.Google Scholar
  126. 126.
    Felton A, Nilsson U, Sonesson J, Felton AM, Roberge JM, Ranius T, et al. Replacing monocultures with mixed-species stands: ecosystem service implications of two production forest alternatives in Sweden. Ambio. 2016;45:124–39.CrossRefGoogle Scholar
  127. 127.
    Schmid-Haas P, Bachofen H. Die Sturmgefährdung von Einzelbäumen und Beständen. Schweiz Z Für Forstwes. 1991;142:477–504.Google Scholar
  128. 128.
    Zindel U. Die Sturmschäden in den hessischen Forstämtern Frankenberg, Langen und Schlüchtern nach den Stürmen vom Februar 1990—Ergebnisse einer Luftbildauswertung. Forschber Hess Forstl Vers. 1991;12:41–90.Google Scholar
  129. 129.
    Mayer P, Brang P, Dobbertin M, Hallenbarter D, Renaud J-P, Walthert L, et al. Forest storm damage is more frequent on acidic soils. Ann For Sci. 2005;62:303–11.CrossRefGoogle Scholar
  130. 130.
    Schütz JP, Götz M, Schmid W, Mandallaz D. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res. 2006;125:291–302.CrossRefGoogle Scholar
  131. 131.
    Valinger E, Fridman J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For Ecol Manag. 2011;262:398–403.CrossRefGoogle Scholar
  132. 132.
    Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T. Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag. 2012;267:284–96.CrossRefGoogle Scholar
  133. 133.
    Bauhus J, Forrester D, Gardiner B, Jactel H, Vallejo R, Pretzsch H. Ecological stability of mixed-species forests. In: Pretzsch H, Forrester DI, Bauhus J, editors. Mixed-Species Forests - Ecology and Management. Heidelberg: Springer Verlag Germany; 2017. p. 435-504.Google Scholar
  134. 134.
    Jalkanen A. The probability of moose damage at the stand level in southern Finland. Silva Fenn 2001;35:159-168.Google Scholar
  135. 135.
    Milligan HT, Koricheva J. Effects of tree species richness and composition on moose winter browsing damage and foraging selectivity: an experimental study. Mysterud A, editor. J Anim Ecol 2013;82:739–48.Google Scholar
  136. 136.
    • Cook-Patton SC, LaForgia M, Parker JD. Positive interactions between herbivores and plant diversity shape forest regeneration. Proc R Soc B Biol Sci. 2014;281:20140261. In this study, a factorial manipulation of both plant diversity and presence/absence of deer showed that tree species diversity increased seedling survival and growth only in the presence of deer owing to selective browsing on competitive dominants and associational protection of susceptible species by less palatable species.CrossRefGoogle Scholar
  137. 137.
    Ward AI, White PCL, Walker NJ, Critchley CH. Conifer leader browsing by roe deer in English upland forests: effects of deer density and understorey vegetation. For Ecol Manag. 2008;256:1333–8.CrossRefGoogle Scholar
  138. 138.
    Tálamo A, Barchuk A, Cardozo S, Trucco C, MarÁs G, Trigo C. Direct versus indirect facilitation (herbivore mediated) among woody plants in a semiarid Chaco forest: a spatial association approach: facilitation in Chaco forest. Austral Ecol. 2015;40:573–80.CrossRefGoogle Scholar
  139. 139.
    Smit C, Vandenberghe C, den Ouden J, Müller-Schärer H. Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia. 2007;152:265–73.CrossRefGoogle Scholar
  140. 140.
    Vandenberghe C, Freléchoux F, Buttler A. The influence of competition from herbaceous vegetation and shade on simulated browsing tolerance of coniferous and deciduous saplings. Oikos. 2008;117:415–23.CrossRefGoogle Scholar
  141. 141.
    Jensen AM, Götmark F, Löf M. Shrubs protect oak seedlings against ungulate browsing in temperate broadleaved forests of conservation interest: a field experiment. For Ecol Manag. 2012;266:187–93.CrossRefGoogle Scholar
  142. 142.
    Stutz RS, Banks PB, Dexter N, McArthur C. Associational refuge in practice: can existing vegetation facilitate woodland restoration? Oikos. 2015;124:571–80.CrossRefGoogle Scholar
  143. 143.
    • Castagneyrol B, Jactel H, Vacher C, Brockerhoff EG, Koricheva J. Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J Appl Ecol. 2014;51:134–41. This study demonstrates that associational resistance is more likely to occur against monophagous than polyphagous forest insects. It shows that mixing phylogenetically more distinct tree species, such as mixtures of conifers and broadleaved trees, results in more effective reduction in herbivore damage.CrossRefGoogle Scholar
  144. 144.
    Guyot V, Castagneyrol B, Vialatte A, Deconchat M, Jactel H. Tree diversity reduces pest damage in mature forests across Europe. Biol Lett. 2016;12:20151037.CrossRefGoogle Scholar
  145. 145.
    Haase J, Castagneyrol B, Cornelissen JHC, Ghazoul J, Kattge J, Koricheva J, et al. Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos. 2015;124:1674–85.CrossRefGoogle Scholar
  146. 146.
    Vehviläinen H, Koricheva J, Ruohomäki K. Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia. 2007;152:287–98.CrossRefGoogle Scholar
  147. 147.
    Schuldt A, Baruffol M, Böhnke M, Bruelheide H, Härdtle W, Lang AC, et al. Tree diversity promotes insect herbivory in subtropical forests of south-east China. J Ecol. 2010;98:917–26.CrossRefGoogle Scholar
  148. 148.
    Plath M, Dorn S, Riedel J, Barrios H, Mody K. Associational resistance and associational susceptibility: specialist herbivores show contrasting responses to tree stand diversification. Oecologia. 2011;169:477–87.CrossRefGoogle Scholar
  149. 149.
    Wein A, Bauhus J, Bilodeau-Gauthier S, Scherer-Lorenzen M, Nock C, Staab M. Tree species richness promotes invertebrate herbivory on congeneric native and exotic tree saplings in a young diversity experiment. Reinhart KO, editor. PLoS One. 2016;11:e0168751.Google Scholar
  150. 150.
    Heiermann J, Schütz S. The effect of the tree species ratio of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) on polyphagous and monophagous pest species—Lymantria monacha L. and Calliteara pudibunda L. (Lepidoptera: Lymantriidae) as an example. For Ecol Manag. 2008;255:1161–6.CrossRefGoogle Scholar
  151. 151.
    Castagneyrol B, Giffard B, Péré C, Jactel H. Plant apparency, an overlooked driver of associational resistance to insect herbivory. J Ecol. 2013;101:418–29.CrossRefGoogle Scholar
  152. 152.
    Gerlach JP, Reich PB, Puettmann K, Baker T. Species, diversity, and density affect tree seedling mortality from Armillaria root rot. Can J For Res. 1997;27:1509–12.CrossRefGoogle Scholar
  153. 153.
    Morrison DJ, Wallis GM, Weir LC. Control of Armillaria and Phellinus root diseases: 20-year results from the Skimikin stump removal experiment. 1988;No. BC-X-302.Google Scholar
  154. 154.
    Korhonen K, Delatour C, Greig BJ, Schönhar S. Silvicultural control. In: Woodward S, Stenlid J, Karjalainen R, Huttermann A, editors. Heterobasidion Annosum Biol. Ecol. Control. Wallingford: CAB International; 1998. p. 283–314.Google Scholar
  155. 155.
    Linden M, Vollbrecht G. Sensitivity of Picea abies to butt rot in pure stands and in mixed stands with Pinus sylvestris in southern Sweden. Silva Fenn. 2002;36:767–78.CrossRefGoogle Scholar
  156. 156.
    Martinsson O. Birch and spruce: review of knowledge on silviculture, ecology and economics of mixed stands of birch and spruce. Rapp.-Institutionen Skogsskotsel Sver. Lantbruksuniversitet. 2002;45Google Scholar
  157. 157.
    Puddu A, Luisi N, Capretti P, Santini A. Environmental factors related to damage by Heterobasidion abietinum in Abies alba forests in Southern Italy. For Ecol Manag. 2003;180:37–44.CrossRefGoogle Scholar
  158. 158.
    Piri T, Korhonen K, Sairanen A. Occurrence of Heterobasidion annosum in pure and mixed spruce stands in Southern Finland. Scand J For Res. 1990;5:113–25.CrossRefGoogle Scholar
  159. 159.
    Nguyen D, Castagneyrol B, Bruelheide H, Bussotti F, Guyot V, Jactel H, et al. Fungal disease incidence along tree diversity gradients depends on latitude in European forests. Ecol Evol. 2016.Google Scholar
  160. 160.
    Hantsch L, Braun U, Haase J, Purschke O, Scherer-Lorenzen M, Bruelheide H. No plant functional diversity effects on foliar fungal pathogens in experimental tree communities. Fungal Divers. 2014;66:139–51.CrossRefGoogle Scholar
  161. 161.
    Montagnini F, González E, Porras C, Rheingans R. Mixed and pure forest plantations in the humid neotropics: a comparison of early growth, pest damage and establishment costs. Commonw For Rev. 1995;74:306–14.Google Scholar
  162. 162.
    •• Haas SE, Hooten MB, Rizzo DM, Meentemeyer RK. Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol Lett. 2011;14:1108–16. This study finds evidence of a dilution effect where disease risk was lower in sites with higher plant species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity.CrossRefGoogle Scholar
  163. 163.
    Karlman M, Hansson P, Witzell J. Scleroderris canker on Lodgepole pine introduced in Northern Sweden. Can J For Res-Rev Can Rech For. 1994;24:1948–59.CrossRefGoogle Scholar
  164. 164.
    Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen–host range. Proc Natl Acad Sci. 2007;104:4979–83.CrossRefGoogle Scholar
  165. 165.
    Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services: biodiversity and ecosystem functioning/services. Ecol Lett. 2006;9:1146–56.CrossRefGoogle Scholar
  166. 166.
    Holle BV, Simberloff D. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology. 2005;86:3212–8.CrossRefGoogle Scholar
  167. 167.
    Stohlgren TJ, Barnett DT, Kartesz JT. The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ. 2003;1:11–4.CrossRefGoogle Scholar
  168. 168.
    Iannone BV III, Potter KM, Hamil K-AD, Huang W, Zhang H, Guo Q, et al. Evidence of biotic resistance to invasions in forests of the Eastern USA. Landsc Ecol. 2016;31:85–99.CrossRefGoogle Scholar
  169. 169.
    Chytrỳ M, Jarosik V, Pysek P, Hajek O, Knollová I, Tichỳ L, et al. Separating habitat invasibility by alien plants from the actual level of invasion. Ecology. 2008;89:1541–53.CrossRefGoogle Scholar
  170. 170.
    Jactel H, Menassieu P, Vetillard F, Gaulier A, Samalens JC, Brockerhoff EG. Tree species diversity reduces the invasibility of maritime pine stands by the bast scale, Matsucoccus feytaudi (Homoptera: Margarodidae). Can J For Res. 2006;36:314–23.CrossRefGoogle Scholar
  171. 171.
    •• Guyot V, Castagneyrol B, Vialatte A, Deconchat M, Selvi F, Bussotti F, et al. Tree diversity limits the impact of an invasive forest pest. Hector A, editor. PLoS One. 2015;10:e0136469. This is the first experimental study showing a significant pattern of associational resistance to an alien insect in mixed forests, which suggests that conservation biological control method based on tree species mixtures might help to reduce the impact of invasive pests. Google Scholar
  172. 172.
    Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B, Aukema JE. A highly aggregated geographical distribution of forest pest invasions in the USA. Pysek P, editor. Divers Distrib 2013;19:1208–16.Google Scholar
  173. 173.
    Castagneyrol B, Jactel H, Brockerhoff EG, Perrette N, Larter M, Delzon S, et al. Host range expansion is density dependent. Oecologia. 2016;182:779–88.CrossRefGoogle Scholar
  174. 174.
    Fernandez-Conradi P, Jactel H, Hampe A, Leiva MJ, Castagneyrol B. The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere. 2017;8:e01637.CrossRefGoogle Scholar
  175. 175.
    Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. The influence of functional diversity and composition on ecosystem processes. Science. 1997;277:1300–2.CrossRefGoogle Scholar
  176. 176.
    Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci. 1999;96:1463–8.CrossRefGoogle Scholar
  177. 177.
    Hector A, Hautier Y, Saner P, Wacker L, Bagchi R, Joshi J, et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology. 2010;91:2213–20.CrossRefGoogle Scholar
  178. 178.
    Perot T, Vallet P, Archaux F. Growth compensation in an oak–pine mixed forest following an outbreak of pine sawfly (Diprion pini). For Ecol Manag. 2013;295:155–61.CrossRefGoogle Scholar
  179. 179.
    Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H. Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett. 2014;17:1526–35.CrossRefGoogle Scholar
  180. 180.
    Bolte A, Villanueva I. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur. J For Res. 2006;125:15–26.Google Scholar
  181. 181.
    Reyer C, Lasch P, Mohren GMJ, Sterck FJ. Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—a model-based analysis. Ann For Sci. 2010;67:805.CrossRefGoogle Scholar
  182. 182.
    Forrester DI. Ecological and physiological processes in mixed versus monospecific stands. In: Pretzsch H, Forrester DI, Bauhus J, editors. Mixed-Species Forests - Ecology and Management. Heidelberg: Springer Verlag Germany; 2017. p. 73–116.Google Scholar
  183. 183.
    Moore JR, Maguire DA. Natural sway frequencies and damping ratios of trees: concepts, review and synthesis of previous studies. Trees-Struct Funct. 2004;18:195–203.CrossRefGoogle Scholar
  184. 184.
    Dupont S, Pivato D, Brunet Y. Wind damage propagation in forests. Agric For Meteorol. 2015;214:243–51.Google Scholar
  185. 185.
    Gardiner B, Marshall B, Achim A, Belcher R, Wood C. The stability of different silvicultural systems: a wind-tunnel investigation. Forestry. 2005;78:471–84.Google Scholar
  186. 186.
    Quine CP, Malcolm DC. Wind-driven gap development in Birkley Wood, a long-term retention of planted Sitka spruce in upland Britain. Can J For Res. 2007;37:1787–96.CrossRefGoogle Scholar
  187. 187.
    Schwilk DW, Ackerly DD. Flammability and serotiny as strategies: correlated evolution in pines. Oikos. 2001;94:326–36.CrossRefGoogle Scholar
  188. 188.
    Fonda RW. Burning characteristics of needles from eight pine species. For Sci. 2001;47:390–6.Google Scholar
  189. 189.
    Tilman D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci U S A. 2004;101:10854–61.CrossRefGoogle Scholar
  190. 190.
    Lüpke BV, Spellmann H. Aspects of stability, growth and natural regeneration in mixed Norway spruce-European beech stands as a basis of silvicultural decisions. Manag. Mix.-Species For. Silvic. Econ. Wageningen: IBN-DLO Scientific Contributions. Olsthoorn A.F.M.; 1999. p. 245–67.Google Scholar
  191. 191.
    Sholes ODV. Effects of associational resistance and host density on woodland insect herbivores. J Anim Ecol. 2008;77:16–23.CrossRefGoogle Scholar
  192. 192.
    Castagneyrol B, Régolini M, Jactel H. Tree species composition rather than diversity triggers associational resistance to the pine processionary moth. Basic Appl Ecol. 2014;15:516–23.CrossRefGoogle Scholar
  193. 193.
    Conner LG, Bunnell MC, Gill RA. Forest diversity as a factor influencing Engelmann spruce resistance to beetle outbreaks. Can J For Res. 2014;44:1369–75.CrossRefGoogle Scholar
  194. 194.
    Mangels J, Blüthgen N, Frank K, Grassein F, Hilpert A, Mody K. Tree species composition and harvest intensity affect herbivore density and leaf damage on beech, Fagus sylvatica, in different landscape contexts. PLoS One. 2015;10:e0126140.CrossRefGoogle Scholar
  195. 195.
    Otway SJ, Hector A, Lawton JH. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J Anim Ecol. 2005;74:234–40.CrossRefGoogle Scholar
  196. 196.
    Bañuelos M-J, Kollmann J. Effects of host-plant population size and plant sex on a specialist leaf-miner. Acta Oecol. 2011;37:58–64.CrossRefGoogle Scholar
  197. 197.
    Damien M, Jactel H, Meredieu C, Régolini M, van Halder I, Castagneyrol B. Pest damage in mixed forests: disentangling the effects of neighbor identity, host density and host apparency at different spatial scales. For Ecol Manag. 2016;378:103–10.CrossRefGoogle Scholar
  198. 198.
    Keesing F, Holt RD, Ostfeld RS. Effects of species diversity on disease risk. Ecol Lett. 2006;9:485–98.CrossRefGoogle Scholar
  199. 199.
    Kemp WP, Simmons GA. Influence of stand factors on survival of early instar spruce budworm. Environ Entomol. 1979;8:993–6.CrossRefGoogle Scholar
  200. 200.
    Cappuccino N, Lavertu D, Bergeron Y, Régnière J. Spruce budworm impact, abundance and parasitism rate in a patchy landscape. Oecologia. 1998;114:236–42.CrossRefGoogle Scholar
  201. 201.
    Jules ES, Kauffman MJ, Ritts WD, Carroll AL. Spread of an invasive pathogen over a variable landscape: a nonnative root rot on Port Orford Cedar. Ecology. 2002;83:3167–81.CrossRefGoogle Scholar
  202. 202.
    Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P. Biodiversity as a barrier to ecological invasion. Nature. 2002;417:636–8.CrossRefGoogle Scholar
  203. 203.
    Azevedo JC, Possacos A, Aguiar CF, Amado A, Miguel L, Dias R, et al. The role of holm oak edges in the control of disturbance and conservation of plant diversity in fire-prone landscapes. For Ecol Manag. 2013;297:37–48.CrossRefGoogle Scholar
  204. 204.
    Smit C, Béguin D, Buttler A, Müller-Schärer H. Safe sites for tree regeneration in wooded pastures: a case of associational resistance? J Veg Sci. 2005;16:209–14.CrossRefGoogle Scholar
  205. 205.
    Smit C, Den Ouden J, MüLler-SchäRer H. Unpalatable plants facilitate tree sapling survival in wooded pastures: unpalatable plants facilitate tree saplings survival. J Appl Ecol. 2006;43:305–12.CrossRefGoogle Scholar
  206. 206.
    Van Uytvanck J, Van Noyen A, Milotic T, Decleer K, Hoffmann M. Woodland regeneration on grazed former arable land: a question of tolerance, defence or protection? J Nat Conserv. 2010;18:206–14.CrossRefGoogle Scholar
  207. 207.
    Hazeldine A, Kirkpatrick JB. Practical and theoretical implications of a browsing cascade in Tasmanian forest and woodland. Aust J Bot. 2015;63:435.CrossRefGoogle Scholar
  208. 208.
    Floater GJ, Zalucki MP. Habitat structure and egg distributions in the processionary caterpillar Ochrogaster lunifer: lessons for conservation and pest management. J Appl Ecol. 2000;37:87–99.CrossRefGoogle Scholar
  209. 209.
    Dulaurent A-M, Porté AJ, van Halder I, Vétillard F, Menassieu P, Jactel H. Hide and seek in forests: colonization by the pine processionary moth is impeded by the presence of nonhost trees. Agric For Entomol. 2012;14:19–27.CrossRefGoogle Scholar
  210. 210.
    Zhang Q-H, Schlyter F. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric For Entomol. 2004;6:1–20.CrossRefGoogle Scholar
  211. 211.
    Jactel H, Birgersson G, Andersson S, Schlyter F. Non-host volatiles mediate associational resistance to the pine processionary moth. Oecologia. 2011;166:703–11.CrossRefGoogle Scholar
  212. 212.
    Ruttan A, Lortie CJ. A systematic review of the attractant-decoy and repellent-plant hypotheses: do plants with heterospecific neighbours escape herbivory? J Plant Ecol. 2015;8:337–46.CrossRefGoogle Scholar
  213. 213.
    Kerr JL, Kelly D, Bader MK-F, Brockerhoff EG. Olfactory cues, visual cues, and semiochemical diversity interact during host location by invasive forest beetles. J Chem Ecol. 2017;43:17–25.CrossRefGoogle Scholar
  214. 214.
    Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—a mechanism for associational herbivore resistance? New Phytol. 2010;186:722–32.CrossRefGoogle Scholar
  215. 215.
    Pearse IS, Hughes K, Shiojiri K, Ishizaki S, Karban R. Interplant volatile signaling in willows: revisiting the original talking trees. Oecologia. 2013;172:869–75.CrossRefGoogle Scholar
  216. 216.
    Andersson P, Löfstedt C, Hambäck PA. How insects sense olfactory patches—the spatial scaling of olfactory information. Oikos. 2013;122:1009–16.CrossRefGoogle Scholar
  217. 217.
    Andersson P, Löfstedt C, Hambäck PA. Insect density–plant density relationships: a modified view of insect responses to resource concentrations. Oecologia. 2013;173:1333–44.CrossRefGoogle Scholar
  218. 218.
    McCauley KJ, Cook SA. Phellinus weirii infestation of two mountain hemlock forests in the Oregon Cascades. For Sci. 1980;26:23–9.Google Scholar
  219. 219.
    Bigger M. The effect of attack by Amblypelta cocophaga China (Hemiptera:Coreidae) on growth of Eucalyptus deglupta in the Solomon Islands. Bull Entomol Res. 1985;75:595.CrossRefGoogle Scholar
  220. 220.
    Elek JA. Assessing the impact of leaf beetles in eucalypt plantations and exploring options for their management. Tasforests-Hobart 1997;139–54.Google Scholar
  221. 221.
    White JA, Whitham TG. Associational susceptibility of cottonwood to a box elder herbivore. Ecology. 2000;81:1795–803.CrossRefGoogle Scholar
  222. 222.
    Buée M, Maurice J-P, Zeller B, Andrianarisoa S, Ranger J, Courtecuisse R, et al. Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand. Fungal Ecol. 2011;4:22–31.CrossRefGoogle Scholar
  223. 223.
    Lehto T, Zwiazek JJ. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza. 2011;21:71–90.CrossRefGoogle Scholar
  224. 224.
    Mason WL, Connolly T. Mixtures with spruce species can be more productive than monocultures: evidence from the Gisburn experiment in Britain. Forestry. 2014;87:209–17.CrossRefGoogle Scholar
  225. 225.
    Straub CS, Simasek NP, Dohm R, Gapinski MR, Aikens EO, Nagy C. Plant diversity increases herbivore movement and vulnerability to predation. Basic Appl Ecol. 2014;15:50–8.CrossRefGoogle Scholar
  226. 226.
    Quayle D, Régnière J, Cappuccino N, Dupont A. Forest composition, host-population density, and parasitism of spruce budworm Choristoneura fumiferana eggs by Trichogramma minutum. Entomol Exp Appl. 2003;107:215–27.CrossRefGoogle Scholar
  227. 227.
    Riihimäki J, Kaitaniemi P, Koricheva J, Vehviläinen H. Testing the enemies hypothesis in forest stands: the important role of tree species composition. Oecologia. 2005;142:90–7.CrossRefGoogle Scholar
  228. 228.
    Sobek S, Scherber C, Steffan-Dewenter I, Tscharntke T. Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia. 2009;160:279–88.CrossRefGoogle Scholar
  229. 229.
    Schuldt A, Both S, Bruelheide H, Härdtle W, Schmid B, Zhou H, Assmann T. Predator diversity and abundance provide little support for the enemies hypothesis in forests of high tree diversity. PloS one. 2011;6:e22905. Google Scholar
  230. 230.
    Castagneyrol B, Jactel H. Unraveling plant-animal diversity relationships: a meta-regression analysis. Ecology. 2012;93:2115–24.CrossRefGoogle Scholar
  231. 231.
    Staab M, Schuldt A, Assmann T, Klein A-M. Tree diversity promotes predator but not omnivore ants in a subtropical Chinese forest: tree diversity promotes predator ants. Ecol Entomol. 2014;39:637–47.CrossRefGoogle Scholar
  232. 232.
    Nixon AE, Roland J. Generalist predation on forest tent caterpillar varies with forest stand composition: an experimental study across multiple life stages. Ecol Entomol. 2012;37:13–23.CrossRefGoogle Scholar
  233. 233.
    Muiruri EW, Rainio K, Koricheva J. Do birds see the forest for the trees? Scale-dependent effects of tree diversity on avian predation of artificial larvae. Oecologia. 2016;180:619–30.CrossRefGoogle Scholar
  234. 234.
    Denoth M, Frid L, Myers JH. Multiple agents in biological control: improving the odds? Biol Control. 2002;24:20–30.CrossRefGoogle Scholar
  235. 235.
    Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst. 2009;40:573–92.CrossRefGoogle Scholar
  236. 236.
    Tylianakis JM, Romo CM. Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol. 2010;11:657–68.CrossRefGoogle Scholar
  237. 237.
    Murray D. Rhizosphere microorganisms from the Jarrah Forest of Western Australia and their effects on vegetative growth and sporulation in Phytophthora cinnamomi rands. Aust J Bot. 1987;35:567–80.CrossRefGoogle Scholar
  238. 238.
    DeLong RL, Lewis KJ, Simard SW, Gibson S. Fluorescent pseudomonad population sizes baited from soils under pure birch, pure Douglas-fir, and mixed forest stands and their antagonism toward Armillaria ostoyae in vitro. Can J For Res. 2002;32:2146–59.CrossRefGoogle Scholar
  239. 239.
    Shea K, Chesson P. Community ecology theory as a framework for biological invasions. Trends Ecol Evol. 2002;17:170–6.CrossRefGoogle Scholar
  240. 240.
    Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–70.CrossRefGoogle Scholar
  241. 241.
    Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:aaf8957.CrossRefGoogle Scholar
  242. 242.
    Schmid I, Kazda M. Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manag. 2002;159:37–47.CrossRefGoogle Scholar
  243. 243.
    Bond WJ, Midgley JJ. Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos. 1995;73:79.CrossRefGoogle Scholar
  244. 244.
    Blauw LG, Wensink N, Bakker L, van Logtestijn RSP, Aerts R, Soudzilovskaia NA, et al. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior. Ecol Evol. 2015;5:3830–41.CrossRefGoogle Scholar
  245. 245.
    Cochrane MA. Fire science for rainforests. Nature. 2003;421:913–9.CrossRefGoogle Scholar
  246. 246.
    Unsicker SB, Oswald A, Köhler G, Weisser WW. Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologia. 2008;156:313–24.CrossRefGoogle Scholar
  247. 247.
    Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature. 2015;520:542–4.CrossRefGoogle Scholar
  248. 248.
    Mattila U. Probability models for pine twisting rust (Melampsora pinitorqua) damage in Scots pine (Pinus sylvestris) stands in Finland. For Pathol. 2005;35:9–21.CrossRefGoogle Scholar
  249. 249.
    Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PloS One. 2009;4:e5695.Google Scholar
  250. 250.
    de Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, et al. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol Evol. 2011;2:163–74.CrossRefGoogle Scholar
  251. 251.
    Albert CH, de Bello F, Boulangeat I, Pellet G, Lavorel S, Thuiller W. On the importance of intraspecific variability for the quantification of functional diversity. Oikos. 2012;121:116–26.CrossRefGoogle Scholar
  252. 252.
    Moreira X, Abdala-Roberts L, Parra-Tabla V, Mooney KA. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species. PLoS One. 2014;9:e105438.CrossRefGoogle Scholar
  253. 253.
    Nickmans H, Verheyen K, Guiz J, Jonard M, Ponette Q. Effects of neighbourhood identity and diversity on the foliar nutrition of sessile oak and beech. For Ecol Manag. 2015;335:108–17.CrossRefGoogle Scholar
  254. 254.
    Forey E, Langlois E, Lapa G, Korboulewsky N, Robson TM, Aubert M. Tree species richness induces strong intraspecific variability of beech (Fagus sylvatica) leaf traits and alleviates edaphic stress. Eur J For Res. 2016;135:707–17.CrossRefGoogle Scholar
  255. 255.
    Castagneyrol B, Bonal D, Damien M, Jactel H, Meredieu C, Muiruri EW, et al. Bottom-up and top-down effects of tree species diversity on leaf insect herbivory. Ecol Evol. 2017;7:3520–31.CrossRefGoogle Scholar
  256. 256.
    Laine A-L, Burdon JJ, Dodds PN, Thrall PH. Spatial variation in disease resistance: from molecules to metapopulations. J Ecol. 2011;99:96–112.CrossRefGoogle Scholar
  257. 257.
    Castagneyrol B, Lagache L, Giffard B, Kremer A, Jactel H. Genetic diversity increases insect herbivory on oak saplings. Wright J, editor. PLoS One. 2012;7:e44247.Google Scholar
  258. 258.
    Barton KE, Valkama E, Vehviläinen H, Ruohomäki K, Knight TM, Koricheva J. Additive and non-additive effects of birch genotypic diversity on arthropod herbivory in a long-term field experiment. Oikos. 2015;124:697–706.CrossRefGoogle Scholar
  259. 259.
    Ricklefs RE. A comprehensive framework for global patterns in biodiversity. Ecol Lett. 2004;7:1–15.CrossRefGoogle Scholar
  260. 260.
    de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, et al. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography. 2013;36:393–402.CrossRefGoogle Scholar
  261. 261.
    Fernandes PM, Cruz MG. Plant flammability experiments offer limited insight into vegetation-fire dynamics interactions. New Phytol. 2012;194:606–9.Google Scholar
  262. 262.
    Senft RL, Coughenour MB, Bailey DW, Rittenhouse LR, Sala OE, Swift DM. Large herbivore foraging and ecological hierarchies. Bioscience. 1987;37:789–99.CrossRefGoogle Scholar
  263. 263.
    Stokes K, Stiling P. Effects of relative host plant abundance, density and inter-patch distance on associational resistance to a coastal gall-making midge, Asphondylia borrichiae (Diptera: Cecidomyiidae). Fla Entomol. 2013;96:1143–8.CrossRefGoogle Scholar
  264. 264.
    Holdenrieder O, Pautasso M, Weisberg PJ, Lonsdale D. Tree diseases and landscape processes: the challenge of landscape pathology. Trends Ecol Evol. 2004;19:446–52.CrossRefGoogle Scholar
  265. 265.
    Barton KE, Koricheva J. The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat. 2010;175:481–93.CrossRefGoogle Scholar
  266. 266.
    Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol. 2013;3:399–415.CrossRefGoogle Scholar
  267. 267.
    Bonello P, Gordon TR, Herms DA, Wood DL, Erbilgin N. Nature and ecological implications of pathogen-induced systemic resistance in conifers: a novel hypothesis. Physiol Mol Plant Pathol. 2006;68:95–104.CrossRefGoogle Scholar
  268. 268.
    Morrison DJ, Cruickshank MG, Lalumière A. Control of laminated and Armillaria root diseases by stump removal and tree species mixtures: amount and cause of mortality and impact on yield after 40 years. For Ecol Manag. 2014;319:75–98.CrossRefGoogle Scholar
  269. 269.
    Thompson I, Mackey B, McNulty S, Mosseler A. Secretariat of the convention on the biological diversity. Forest resilience, biodiversity, and climate change: a synthesis of the biodiversity, resilience, stabiblity relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series. 2009; p. 67.Google Scholar
  270. 270.
    Pedro MS, Rammer W, Seidl R. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia. 2015;177:619–30.CrossRefGoogle Scholar
  271. 271.
    Muiruri EW, Milligan HT, Morath S, Koricheva J. Moose browsing alters tree diversity effects on birch growth and insect herbivory. Funct Ecol. 2015;29:724–35.Google Scholar
  272. 272.
    Tack AJM, Dicke M. Plant pathogens structure arthropod communities across multiple spatial and temporal scales. Funct Ecol. 2013;27:633–45.CrossRefGoogle Scholar
  273. 273.
    Bauhus J, Forrester D, Pretzsch H, Felton A, Pyttel P, Benneter A  Silvicultural options for mixed-species stands. In: Pretzsch H, Forrester DI, Bauhus J, editors.  Mixed-Species Forests - Ecology and Management. Heidelberg: Springer Verlag Germany; 2017, p. 339–384.Google Scholar
  274. 274.
    Knoke T. Economics of mixed forests. In: Pretzsch H, Forrester DI, Bauhus J, editors. Mixed-Species Forests - Ecology and Management. Heidelberg: Springer Verlag Germany; 2017. p. 547–80.Google Scholar
  275. 275.
    Nichols JD, Bristow M, Vanclay JK. Mixed-species plantations: prospects and challenges. For Ecol Manag. 2006;233:383–90.CrossRefGoogle Scholar
  276. 276.
    Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SF. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol Manag. 2013;301:43–50.CrossRefGoogle Scholar
  277. 277.
    Bauhus J, van der Meer P, Kanninen M, editors. Ecosystem goods and services from plantation forests. London; Washington, D.C: Earthscan; 2010.Google Scholar
  278. 278.
    Jactel H, Branco M, Duncker P, Gardiner B, Grodzki W, Langstrom B, et al. A Multicriteria risk analysis to evaluate impacts of forest management alternatives on forest health in Europe. Ecol Soc. 2012;17Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hervé Jactel
    • 1
  • Jürgen Bauhus
    • 2
  • Johanna Boberg
    • 3
  • Damien Bonal
    • 4
  • Bastien Castagneyrol
    • 1
  • Barry Gardiner
    • 5
  • Jose Ramon Gonzalez-Olabarria
    • 6
  • Julia Koricheva
    • 7
  • Nicolas Meurisse
    • 8
  • Eckehard G. Brockerhoff
    • 9
  1. 1.BIOGECO, INRAUniversity of BordeauxCestasFrance
  2. 2.Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
  3. 3.Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Université de Lorraine, INRA, UMR EEFChampenouxFrance
  5. 5.EFI AtlanticCestasFrance
  6. 6.Forest Sciences Centre of Catalonia (CTFC-CEMFOR)SolsonaSpain
  7. 7.School of Biological SciencesRoyal Holloway University of LondonSurreyUK
  8. 8.Scion (New Zealand Forest Research Institute)RotoruaNew Zealand
  9. 9.Scion (New Zealand Forest Research Institute)ChristchurchNew Zealand

Personalised recommendations