Effects of water pretreatment on the extractable salinity gradient energy at river mouths: the case of Magdalena River, Caribbean Sea

Abstract

River mouths are locations with high theoretical potential for harvesting salinity gradient energy (SGE) since waters of different salinities are abundant in these places. However, the net extractable SGE potential—or site-specific potential (SSP)—is determined not only by the available natural resources but also by the energy consumption required for operating the power plant. Particularly, the required inputs for water pretreatment prior to energy generation to preserve the proper functioning of the membranes and other components within the systems, have been identified as a major drawback for SGE generation from natural waters. In this paper, the required energy consumed during water pretreatment was estimated, comparing conventional and membrane-based methods. This energy input was included in the formulations of the SSP, as a function of the design flow of the power plant and was used to assess the extractable SGE potential at the Magdalena River mouth, a top-ten system for SGE generation worldwide. The results showed that water pretreatment produced an important reduction of the SSP in the case study, while high potentials were still found for appropriate design flows.

This is a preview of subscription content, access via your institution.

Fig. 1

Satellite image source: CNES/Astrium 18.03.2016, taken from Google Earth. Coordinate system: UTM Zone P18

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Al-Sarkal T, Arafat HA (2013) Ultrafiltration versus sedimentation-based pretreatment in Fujairah-1 RO plant: environmental impact study. Desalination 317:55–66. https://doi.org/10.1016/j.desal.2013.02.019

    Article  Google Scholar 

  2. Alvarez-Silva O, Osorio AF (2015) Salinity gradient energy potential in Colombia considering site specific constraints. Renew Energy 74:737–748. https://doi.org/10.1016/j.renene.2014.08.074

    Article  Google Scholar 

  3. Alvarez-Silva O, Winter C, Osorio AF (2014) Salinity gradient energy at river mouths. Environ Sci Technol Lett 1:410–415. https://doi.org/10.1021/ez500239n

    Article  Google Scholar 

  4. Alvarez-Silva OA, Osorio AF, Winter C (2016) Practical global salinity gradient energy potential. Renew Sustain Energy Rev 60:1387–1395. https://doi.org/10.1016/j.rser.2016.03.021

    Article  Google Scholar 

  5. Bar-Zeev E, Perreault F, Straub AP, Elimelech M (2015) Impaired performance of pressure-retarded osmosis due to irreversible biofouling. Environ Sci Technol 49:13050–13058. https://doi.org/10.1021/acs.est.5b03523

    Article  Google Scholar 

  6. Bucs SS, Valladares Linares R, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS (2014) Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Water Res 67:227–242. https://doi.org/10.1016/j.watres.2014.09.005

    Article  Google Scholar 

  7. Cipollina A, Micale G (2016) Sustainable energy from salinity gradients. Elsevier, Amsterdam

    Google Scholar 

  8. Ebrahim SH, Abdel-Jawad MM, Safar M (1995) Conventional pretreatment system for the Doha Reverse Osmosis Plant: technical and economic assessment. Desalination 102:179–187. https://doi.org/10.1016/0011-9164(95)00052-4

    Article  Google Scholar 

  9. Etter PC, Lamb PJ, Portis DH (1987) Heat and freshwater budgets of the Caribbean Sea with revised estimates for the Central American seas. J Phys Ocean 17:1232–1248. https://doi.org/10.1175/1520-0485(1987)017%3c1232:HAFBOT%3e2.0.CO;2

    Article  Google Scholar 

  10. Higgins A, Restrepo JC, Ortiz JC, Pierini J, Otero L (2015) Suspended sediment transport in the Magdalena River (Colombia, South America): hydrologic regime, rating parameters and effective discharge variability. Int J Sediment Res 22:2. https://doi.org/10.1016/j.ijsrc.2015.04.003

    Article  Google Scholar 

  11. Isaacs JD, Seymour RJ (1973) The ocean as a power resource. Int J Environ Stud 4:201–205. https://doi.org/10.1080/00207237308709563

    Article  Google Scholar 

  12. Jia Z, Wang B, Song S, Fan Y (2014) Blue energy: current technologies for sustainable power generation from water salinity gradient. Renew Sustain Energy Rev 31:91–100. https://doi.org/10.1016/j.rser.2013.11.049

    Article  Google Scholar 

  13. Kingsbury RS, Liu F, Zhu S, Boggs C, Armstrong M, Call D, Coronell O (2017) Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis. J Memb Sci 541:621–632. https://doi.org/10.1016/j.memsci.2017.07.038

    Article  Google Scholar 

  14. Labrecque R (2009) Exergy as a useful variable for quickly assessing the theoretical maximum power of salinity gradient energy systems. Entropy 11:798–806. https://doi.org/10.3390/e11040798

    Article  Google Scholar 

  15. Monnot M, Laborie S, Cabassud C (2016) Granular activated carbon filtration plus ultrafiltration as a pretreatment to seawater desalination lines: impact on water quality and UF fouling. Desalination 383:1–11. https://doi.org/10.1016/j.desal.2015.12.010

    Article  Google Scholar 

  16. O’Toole G, Jones L, Coutinho C, Hayes C, Napoles M, Achilli A (2016) River-to-sea pressure retarded osmosis: resource utilization in a full-scale facility. Desalination 389:39–51

    Article  Google Scholar 

  17. Ortega S, Stenzel P, Alvarez-Silva O, Osorio AFAF (2014) Site-specific potential analysis for pressure retarded osmosis (PRO) power plants—the León River example. Renew Energy 68:466–474. https://doi.org/10.1016/j.renene.2014.02.033

    Article  Google Scholar 

  18. Osorio AFAF, Montoya RD, Ortiz JC, Peláez D (2016) Construction of synthetic ocean wave series along the Colombian Caribbean Coast: a wave climate analysis. Appl Ocean Res 56:119–131. https://doi.org/10.1016/j.apor.2016.01.004

    Article  Google Scholar 

  19. Pearce GK (2008) UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs. Desalination 222:66–73. https://doi.org/10.1016/j.desal.2007.05.029

    Article  Google Scholar 

  20. Plata SL, Childress AE (2019) Limiting power density in pressure-retarded osmosis: observation and implications. Desalination 467:51–56. https://doi.org/10.1016/j.desal.2019.05.013

    Article  Google Scholar 

  21. Porcelli N, Judd S (2010) Chemical cleaning of potable water membranes: a review. Sep Purif Technol 71:137–143. https://doi.org/10.1016/j.seppur.2009.12.007

    Article  Google Scholar 

  22. Post JW (2009) Blue Energy: electricity production from salinity gradients by reverse electrodialysis. Wageningen Universiteit, Wageningen

    Google Scholar 

  23. Post JW, Goeting CH, Valk J, Goinga S, Veerman J, Hamelers HVM, Hack PJFM (2010) Towards implementation of reverse electrodialysis for power generation from salinity gradients. Desalin Water Treat 16:182–193. https://doi.org/10.5004/dwt.2010.1093

    Article  Google Scholar 

  24. Ratkje SK, Holt T, Fiksdal L (1986) Effect of biofilm formation on salinity power plant output on laboratory scale. AIChE Symp Ser 82:39–44

    Google Scholar 

  25. Restrepo JC, Ortíz JC, Pierini J, Schrottke K, Maza M, Otero L, Aguirre J (2014) Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): magnitude, variability and recent changes. J Hydrol 509:266–281. https://doi.org/10.1016/j.jhydrol.2013.11.045

    Article  Google Scholar 

  26. Restrepo JC, Schrottke K, Traini C, Ortíz JC, Orejarena A, Otero L, Higgins A, Marriaga L (2016) Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): insights from a period of intense change and human intervention (1990–2010). J Coast Res 319:575–589. https://doi.org/10.2112/JCOASTRES-D-14-00263.1

    Article  Google Scholar 

  27. Restrepo JC, Schrottke K, Traini C, Bartholomae A, Ospino S, Ortíz JC, Otero L, Orejarena A (2018) Estuarine and sediment dynamics in a microtidal tropical estuary of high fluvial discharge: Magdalena River (Colombia, South America). Mar Geol 398:86–98. https://doi.org/10.1016/j.margeo.2017.12.008

    Article  Google Scholar 

  28. Salamanca JM, Alvarez-Silva O, Tadeo F (2019) Potential and analysis of an osmotic power plant in the Magdalena river using experimental field-data. Energy 180:548–555. https://doi.org/10.1016/j.energy.2019.05.048

    Article  Google Scholar 

  29. Salibi Z (2001) Performance of reinforced thermosetting resin pipe systems in desalination applications: a long-term solution to corrosion—the Arabian Gulf example. Desalination 138:379–384. https://doi.org/10.1016/S0011-9164(01)00287-9

    Article  Google Scholar 

  30. Schaetzle O, Buisman JN (2015) Salinity gradient energy: current state and new trends. Engineering 1:164. https://doi.org/10.15302/J-ENG-2015046

    Article  Google Scholar 

  31. Seyfried C, Palko H, Dubbs L (2019) Potential local environmental impacts of salinity gradient energy: a review. Renew Sustain Energy Rev 102:111–120. https://doi.org/10.1016/j.rser.2018.12.003

    Article  Google Scholar 

  32. Skilhagen SE, Dugstad JE, Aaberg RJ (2008) Osmotic power—power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination 220:476–482. https://doi.org/10.1016/j.desal.2007.02.045

    Article  Google Scholar 

  33. Stenzel P, Wagner H (2010) Osmotic power plants: potential analysis and site criteria. In: 3rd International conference on ocean energy, Bilbao, Spain, pp 1–5

  34. Straub AP, Deshmukh A, Elimelech M, Straub AP (2015) Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energy Environ Sci. https://doi.org/10.1039/C5EE02985F

    Article  Google Scholar 

  35. Sun C, Xie L, Li X, Sun L, Dai H (2015) Study on different ultrafiltration-based hybrid pretreatment systems for reverse osmosis desalination. Desalination 371:18–25. https://doi.org/10.1016/j.desal.2015.05.020

    Article  Google Scholar 

  36. Teuler A, Glucina K, Laine JM (1999) Assessment of UF pretreatment prior RO membranes for seawater desalination. Desalination 125:89–96. https://doi.org/10.1016/S0011-9164(99)00126-5

    Article  Google Scholar 

  37. Turney D, Fthenakis V (2011) Environmental impacts from the installation and operation of large-scale solar power plants. Renew Sustain Energy Rev 15:3261–3270. https://doi.org/10.1016/j.rser.2011.04.023

    Article  Google Scholar 

  38. Valle-Levinson A (2010) Definition and classification of estuaries. In: Valle-Levinson A (ed) Contemporary issues in estuarine physics. Cambridge University Press, Cambridge, pp 1–10

    Google Scholar 

  39. Veerman J (2010) Reverse electrodialysis: design and optimization by modeling and experimentation. Rijksuniversiteit Groningen, Groningen

    Google Scholar 

  40. Vermaas DA, Kunteng D, Saakes M, Nijmeijer K (2013) Fouling in reverse electrodialysis under natural conditions. Water Res 47:1289–1298. https://doi.org/10.1016/j.watres.2012.11.053

    Article  Google Scholar 

  41. Vermaas DA, Veerman J, Saakes M, Nijmeijer K (2014a) Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ Sci 7:1434. https://doi.org/10.1039/c3ee43501f

    Article  Google Scholar 

  42. Vermaas DA, Kunteng D, Veerman J, Saakes M, Nijmeijer K (2014b) Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis. Environ Sci Technol 48:3065–3073. https://doi.org/10.1021/es4045456

    Article  Google Scholar 

  43. Vrouwenvelder JS, Buiter J, Riviere M, van der Meer WG, van Loosdrecht MC, Kruithof JC (2010) Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems. Water Res 44:689–702. https://doi.org/10.1016/j.watres.2009.09.054

    Article  Google Scholar 

  44. Wang S, Wang S (2015) Impacts of wind energy on environment: a review. Renew Sustain Energy Rev 49:437–443. https://doi.org/10.1016/j.rser.2015.04.137

    Article  Google Scholar 

  45. Wenten I (1996) Ultrafiltration in water treatment and its evaluation as pretreatment for reverse osmosis system. Dept Chem Eng Inst Teknol Bandung. igw@che.itb.ac.id

  46. Yip NY, Elimelech M (2014) Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Environ Sci Technol 48:11002–11012. https://doi.org/10.1021/es5029316

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by COLCIENCIAS—Department of Science, Technology and Innovation of Colombia—by the projects: 111870048985, resolution 1020-2014 and 121571451074, resolution 881-2015. The authors acknowledge the financial support provided by the EXCEED-Swindon project framework.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oscar Alvarez-Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Silva, O., Maturana, A.Y., Pacheco-Bustos, C.A. et al. Effects of water pretreatment on the extractable salinity gradient energy at river mouths: the case of Magdalena River, Caribbean Sea. J. Ocean Eng. Mar. Energy 5, 227–240 (2019). https://doi.org/10.1007/s40722-019-00141-y

Download citation

Keywords

  • Salinity gradient energy
  • Water quality
  • Water pretreatment
  • Design flow
  • Magdalena River mouth