Abstract
The present study focuses on the evaluation of the impact of marine stable stratification on turbine performance and wake characteristics. Stratification is usually present in regions where marine turbines are installed; this is the case of estuarine basins and shelf seas. Stratification influences the turbine efficiency and rotor wake development; on the other hand, the turbine wake may increase vertical mixing and reduce stratification in the water basin. To evaluate mutual interaction between a marine turbine and vertical stratification, two types of stable stratified conditions are simulated, a weak and a strong stratified condition, respectively. The numerical analysis is carried out using Large Eddy Simulation (LES) coupled with a Blade Element Momentum (BEM) turbine module. The capability of the model in reproducing power and thrust characteristics of a turbine is proved by comparison with experimental data. Results show that stratification has a remarkable impact on wake development: concerning power performance, as the stratification intensifies, it increases due to the growth of streamwise velocity; meanwhile, the power coefficient slightly increases. Also, the recovery of wake velocity deficit is faster in case of strong stratification, thus reducing the extension of the downward region affected by the presence of the turbine. Results also show that the turbine modifies stratification, specifically the mixing effect is higher in case of strong stratification; this phenomenon is ascribed to the strong vertical meandering of the wake and the development of an eddy that overturns high-density fluid over lower-density fluid.
This is a preview of subscription content, access via your institution.












































References
Abkar M, Porté-Agel F (2015) Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Phys Fluids 27:035104. https://doi.org/10.1063/1.4913695
Armenio V, Sarkar S (2002) An investigation of stably stratified turbulent channel flow using large-eddy simulation. J Fluid Mech 459:1–42. https://doi.org/10.1017/S0022112002007851
Bai X, Avital EJ, Munjiza A, Williams JJR (2014) Numerical simulation of a marine current turbine in free surface flow. Renew Energy 63:715–723. https://doi.org/10.1016/j.renene.2013.09.042
Bahaj AS, Molland AF, Chaplin JR, Batten WMJ (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32:407–426. https://doi.org/10.1016/j.renene.2006.01.012
Bahaj AS, Batten WMJ, McCann G (2007) Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew Energy 32:2479–2490. https://doi.org/10.1016/j.renene.2007.10.001
Balog I, Ruti PM, Tobin I, Armenio V, Vautard R (2016) A numerical approach for planning offshore wind farms from regional scales over the Mediterranean. Renew Energy 85:395–405
Blackmore T, Batten WMJ, Bahaj AS (2014) Influence of turbulence on the wake of a marine current turbine simulator. Proc R Soc A 470:20140331
Chamorro LP, Porté-Agel F (2010) Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study. Bound Layer Meterol 136:515–533
Chamorro LP, Hill C, Morton S, Ellis C (2013) On the interaction between a turbulent open channel flow and an axial-flow turbine. J Fluid Mech 716:658–670. https://doi.org/10.1017/jfm.2012.571
Churchfield MJ, Li Y, Moriarty PJ (2011) A Large-Eddy Simulation Study of Wake propagation and Power Production in an Array of Tidal Current Turbines. European Wave and Tidal Energy Conference, Southampton, England. https://doi.org/10.1098/rsta.2012.0421
Churchfield MJ, Lee S, Michalakes J, Moriarty PJ (2012) A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J Turbul 13:N14. https://doi.org/10.1080/14685248.2012.668191
De Dominicis M, O’Hara Murray R, Wolf J (2017) Multi-scale ocean response to a large tidal stream turbine array. Renew Energy 114:1160–1179. https://doi.org/10.1016/j.renene.2017.07.058
Espaa G, Aubrun S, Loyer S, Devinant P (2012) Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large scale turbulent eddies. J Wind Eng Ind Aerodyn 101:24–33. https://doi.org/10.1016/j.jweia.2011.10.011
Galea A, Grifoll M, Roman F, Mestres M, Armenio V, Sanchez-Arcilla A, Mangion LZ (2014) Numerical simlation of water mixing and renewals in the Barcelona harbour area: the winter season. Environ Fluid Mech 14(6):1405–1425
Geyer WR, Ralston DK (2011) The Dynamics of Strongly Stratified Estuaries. Treatise on Estuarine and Coastal Science. Elsevier, Amsterdam, pp 37–51
Kang S, Yang X, Sotiropoulos F (2014) On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J Fluid Mech 744:376–403. https://doi.org/10.1017/jfm.2014.82
Kim J, Moin P (1985) Application of fractional step to incompressible Navier–Stokes equations. J Comput Phys 59:308–323. https://doi.org/10.1016/0021-9991(85)90148-2
Lynn PA (2014) Electricity from wave and tide-an introduction to marine energy. Wiley, Hoboken
Maganga F, Germain G, King J, Pinon G, Rivoalen E (2010) Experimental characterization of flow effects on marine current turbine behavior and on its wake properties. IET Renew Power Gener 4:498–509. https://doi.org/10.1049/iet-rpg.2009.0205
Manwell JF, McGowan JG, Rogers AL (2009) Wind energy explained. Wiley, Hoboken
Mikkelsen R (2003) Actuator disc methods applied to wind turbines. Diss. Technical University of Denmark
Milne IA, Sharma RN, Flay RGJ, Bickerton S (2010) The role of an onset turbulence on tidal turbine blade loads. In: 17th Australasian fluid mechanics conference. Auckland
Mycek P, Gaurier B, Germain G, Pinon G, Rivoalen E (2013) Numerical and experimental study of the interaction between two marine current turbines. Int J Mar Energy 1:70–83. https://doi.org/10.1016/j.ijome.2013.05.007
Mycek P, Gaurier B, Germain G, Pinon G, Rivoalen E (2014) Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: one single turbine. Renew Energy 66:729–746. https://doi.org/10.1016/j.renene.2013.12.036 Get rights and content
Ning SA (2014) A simple solution method for the blade element momentum equations with guaranteed convergence. Wind Energy 17:1327–1345. https://doi.org/10.1002/we.1636
Noruzi R, Vahidzadeh M, Riasi A (2015) Design, analysis and predicting hydrokinetic performance of a horizontal marine current axial turbine by consideration of turbine installation depth. Ocean Eng 108:789–798. https://doi.org/10.1016/j.oceaneng.2015.08.056
Petronio A, Roman F, Nasello C, Armenio V (2013) Large eddy simulation model for wind-driven sea circulation in coastal areas. Nonlinear Process Geophys 20(6):1095–1112
Rodi W, Constantinescu G, Stoesser T (2013) Large-eddy simulation in hydraulics. Taylor and Francis, New York
Roman F, Stipcich G, Armenio V, Inghilesi R, Corsini S (2010) Large eddy simulation of mixing in coastal area. Int J Heat Fluid Flow 31(3):327–341
Rosen A, Sheinman Y (1996) The power fluctuations of a wind turbine. J Wind Eng Ind Aerodyn 59:51–68. https://doi.org/10.1016/0167-6105(95)00032-1
Sharples J, Tett P (1994) Modeling the effect of physical variability on the midwater chlorophyll maximum. J Mar Res 52:219–238. https://doi.org/10.1357/0022240943077109
Smagorinski J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164
Stocca V (2010) Development of a large eddy simulation model for the study of pollutant dispersion in urban areas. Ph.D. Dissertation thesis, University of Trieste, Italy
Wu YT, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Bound Layer Meteorol 138:345–366. https://doi.org/10.1007/s10546-010-9569-x
Wu YT, Porté-Agel F (2013) Simulation of turbulent flow inside and above wind farms: model validation and layout effects. Bound Layer Meteorol 146:181–205. https://doi.org/10.1007/s10546-012-9757-y
Yang Z, Wan T (2015) Modeling the Effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries Coasts 38:187–202. https://doi.org/10.1007/s12237-013-9684-2
Zang J, Street R, Koseff J (1994) A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. J Comput Phys 114:18–33. https://doi.org/10.1006/jcph.1994.1146
Zhang W, Markfort CD, Porté-Agel F (2013) Wind-turbine wakes in a convective boundary layer: a wind-tunnel study. Bound Layer Meteorol 146:161–179. https://doi.org/10.1007/s10546-012-9751-4
Acknowledgements
The authors thanks IEFLUIDS s.r.l. for the use of the LESWIND numerical model and Regione Friuli Venezia Giulia who partially financed its development through PAR-FSC 2007-2013 funds.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Brunetti, A., Armenio, V. & Roman, F. Large eddy simulation of a marine turbine in a stable stratified flow condition. J. Ocean Eng. Mar. Energy 5, 1–19 (2019). https://doi.org/10.1007/s40722-019-00131-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40722-019-00131-0
Keywords
- Marine turbine
- Large eddy simulation
- Stratification
- Power performance
- Wake
- Velocity recover