Skip to main content

Advertisement

Log in

Electrical cable utilization for wave energy converters

  • Research Article
  • Published:
Journal of Ocean Engineering and Marine Energy Aims and scope Submit manuscript

Abstract

This paper investigates the suitability of sizing the electrical export cable based on the rating of the contributing WECs within a farm. These investigations have produced a new methodology to evaluate the probabilities associated with peak power values on an annual basis. It has been shown that the peaks in pneumatic power production will follow an exponential probability function for a linear model. A methodology to combine all the individual probability functions into an annual view has been demonstrated on pneumatic power production by a Backward Bent Duct Buoy (BBDB). These investigations have also resulted in a highly simplified and perfunctory model of installed cable cost as a function of voltage and conductor cross-section. This work solidifies the need to determine electrical export cable rating based on expected energy delivery as opposed to device rating as small decreases in energy delivery can result in cost savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blavette A, O’Sullivan DL, Lewis TW, Egan MG (2013) Dimensioning the equipment of a wave farm: Energy storage and cables. In: Ecological Vehicles and Renewable Energies (EVER), 2013 8th International Conference and Exhibition on IEEE, pp 1–9

  • Bull D, Johnson E (2013) Optimal resistive control strategy for a floating OWC device. In: Proceedings of the 10th European Wave and Tidal Energy Conference, Technical Committee of the European Wave and Tidal Energy Conference, Aalborg, Denmark

  • Bull D, Smith C, Jenne DS, Jacob P, Copping A, Willits S, Fontaine A, Brefort D, Copeland G, Gordon M, Jepsen RA (2014) Reference Model 6 (RM6): oscillating water column device. SAND Report SAND2014-18311, Sandia National Laboratories

  • Bull D (2014) Pneumatic Performance of a non-axisymmetric floating oscillating water column wave energy conversion device in random waves. In: Proceedings of the 2nd Marine Energy Technology Symposium, Seattle, WA, USA

  • Bull D (2015) An improved understanding of the natural resonances of moonpools contained within floating rigid-bodies: Theory and application to oscillating water column devices. Ocean Engineering 108:799–812

    Article  Google Scholar 

  • Bull D, Jenne DS, Smith C, Copping A, Copeland G (2016) Levelized cost of energy for a Backward Bent Duct Buoy. International Journal of Marine Energy 16:220234

    Article  Google Scholar 

  • BVG Associates (2012) A guide to an offshore wind farm. Tech. rep., The Crown Estate. http://www.thecrownestate.co.uk/media/5408/ei-a-guide-to-an-offshore-wind-farm.pdf. Accessed 13 June 2016

  • Chakrabarti S (1987) Hydrodynamics of Offshore Structures. WIT Press, Boston

  • CME wire and cable catalog (2015). http://www.cmewire.com/catalog/sec16-mvm/mvm-01-amp.pdf. Accessed 12 Jan 2017

  • Components for Ocean Renewable Energy Systems (CORES) (2008) European Seventh Framework Programme (FP7). http://www.fp7-cores.eu/. Accessed 12 Jan 2017

  • Devore JL, Berk KN (2007) Modern mathematical statistics with applications. Cengage Learning Thomson-Brooks/Cole, Belmont

  • Falcão AFO, Rodrigues RJ (2002) Stochastic modelling of OWC wave power plant performance. Applied Ocean Research 24:5971. https://doi.org/10.1016/S0141-1187(02)00022-6

    Google Scholar 

  • Falcão AFO (2004) Stochastic modelling in wave power-equipment optimization: maximum energy production versus maximum profit. Ocean Engineering 31:1407–1421

    Article  Google Scholar 

  • Falcão AFO, Henriques JCC, Gato LMC (2017) Rotational speed control and electrical rated power of an oscillating-water-column wave energy converter. Energy 120:253–261

    Article  Google Scholar 

  • Green J, Bowen A, Fingersh LJ, Wan YH (2007) Electrical collection and transmission systems for offshore wind power. In: Offshore technology conference, Offshore Technology Conference Apr 2007, Houston

  • Econnect and National Grid (2009) Round 3 Offshore Wind Farm Connection Study. Tech. rep., The Crown Estate. http://www.thecrownestate.co.uk/media/451005/ei-km-in-gt-grid-012009-round-3-offshore-wind-farm-connection-study.pdf. Accessed 13 June 2016

  • Holthuijsen L (2007) Waves in Oceanic and Coastal Waters. Cambridge University Press, Cambridge

  • Lewis EV (1988) Principles of naval architecture, 2nd Revision. In: Lewis, Edward V (eds) Motions in waves and controllability, vol 3. Society of Naval Architects and Marine Engineers, New Jersey

  • Lopez J, Ricci P, Villate J, Bahaj A, Myers L, Retzler C, Dhedin J (2010) Preliminary economic assessment and analysis of grid connection schemes for ocean energy arrays. In: Proceedings of the 3rd international conference on ocean energy, Bilbao

  • Masuda Y, Yamazaki T, Outa Y, McCormick M (1987) Study of backward bent duct buoy. In: OCEANS ’87, pp 384–389. https://doi.org/10.1109/OCEANS.1987.1160750

  • National Fire Protection Association (2005) National Electrical Code: 2005, 10th edn. International Electric Code

  • National Oceanic and Atmospheric Administration and US Department of Commerce. National Data Buoy Center. http://www.ndbc.noaa.gov/. Accessed 21 Feb 2017

  • Ochi MK (1998) Ocean waves: the stochastic approach, Ocean technology, vol 6. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Reference Model Project (2014) Sandia National Laboratories. http://energy.sandia.gov/rmp. Accessed 30 Apr 2014

  • Rice SO (1944) Mathematical analysis of random noise. Bell System Technical Journal 23(3):282–332

    Article  MathSciNet  MATH  Google Scholar 

  • Rice SO (1945) Mathematical analysis of random noise. The Bell System Technical Journal 24(1):46–156

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkar D, Renzi E, Dias F (2013) Wave power extraction by an oscillating wave surge converter in random seas. In: ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, pp V008T09A008–V008T09A008

  • Sharkey F, Bannon E, Conlon M, Gaughan K (2011) Dynamic electrical ratings and the economics of capacity factor for wave energy converter arrays. In: EWTEC 2011 Southhampton, UK

  • Sharkey F, Conlon M, Gaughan K (2013) Impacts on the Electrical System Economics from Critical Design Factors of Wave Energy Converters and Arrays. Paper presented at EWTEC Technical vist. http://arrow.dit.ie/engscheleart/206/. Accessed 13 June 2017

  • WAMIT (2012) WAMIT User Manual. Chestnut Hill, MA, 7th edn. http://www.wamit.com/manual.htm. Accessed 21 Feb 2017

Download references

Acknowledgements

This research was made possible by support from the Department of Energy’s Energy Efficiency and Renewable Energy Office’s Wind and Water Power Program. The research was in support of FOA 0000847: 2013 Open Water Test Infrastructure FOA awarded to Oregon State University for planning activities for The Pacific Marine Energy Center South Energy Test Site (PMEC-SETS). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Bull.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bull, D., Baca, M. & Schenkman, B. Electrical cable utilization for wave energy converters. J. Ocean Eng. Mar. Energy 4, 171–186 (2018). https://doi.org/10.1007/s40722-017-0102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40722-017-0102-x

Keywords

Navigation