Current Trauma Reports

, Volume 3, Issue 4, pp 315–323 | Cite as

Infectious Complications After Battlefield Injuries: Epidemiology, Prevention, and Treatment

  • Heather C. YunEmail author
  • Dana M. Blyth
  • Clinton K. Murray
The Military Perspective (MJ Martin and M Schreiber, Section Editors)
Part of the following topical collections:
  1. Topical Collection on The Military Perspective


Purpose of Review

Recent conflicts have resulted in an unprecedented proportion of survivors of complex battlefield injuries. These patients are predisposed to infectious complications with multidrug-resistant organisms (MDROs). The epidemiology, prevention, and treatment of these infections are described, with emphasis on recent literature.

Recent Findings

Data from the Trauma Infectious Disease Outcomes Study (TIDOS) cohort have revealed a 27% rate of infectious complications in those evacuated after traumatic injury; this increases to 50% in the intensive care unit. Acinetobacter baumannii-calcoaceticus was common in casualties injured in Iraq, but was replaced by other extended-spectrum beta-lactamase-producing Enterobacteriaceae as well as fungi in casualties from Afghanistan. Prevention of infections includes short courses of narrow-spectrum prophylactic antimicrobials and infection control; the mainstay of wound infection prevention is debridement and irrigation. Treatment of many infections is primarily surgical and antimicrobial therapy directed against expected and recovered pathogens.


Infections after combat trauma are common and complex, requiring a multidisciplinary approach to prevention and care.


Combat trauma Military medicine Trauma Infection Infection prevention Drug-resistant organism 


Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest and no funding source was used in the preparation of this manuscript.


The views expressed herein are those of the authors and do not reflect the official policy or position of Brooke Army Medical Center, the US Army Medical Department, the US Army Office of the Surgeon General, the Department of the Air Force, the Department of the Army, or the Department of Defense or the US Government.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Murray CK, Hinkle MK, Yun HC. History of infections associated with combat-related injuries. J Trauma. 2008;64(3 Suppl):S221–31. doi: 10.1097/TA.0b013e318163c40b. Review of prior conflicts’ infectious disease complications and trends over time. CrossRefPubMedGoogle Scholar
  2. 2.
    Centers for Disease C, Prevention. Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002–2004. MMWR Morb Mortal Wkly Rep. 2004;53(45):1063–6.Google Scholar
  3. 3.
    Keen EF 3rd, Robinson BJ, Hospenthal DR, Aldous WK, Wolf SE, Chung KK, et al. Incidence and bacteriology of burn infections at a military burn center. Burns. 2010;36(4):461–8. doi: 10.1016/j.burns.2009.10.012.CrossRefPubMedGoogle Scholar
  4. 4.
    Sebeny PJ, Riddle MS, Petersen K. Acinetobacter baumannii skin and soft-tissue infection associated with war trauma. Clin Infect Dis Off Publ Infect Dis Soc Am. 2008;47(4):444–9. doi: 10.1086/590568.CrossRefGoogle Scholar
  5. 5.
    Whitman TJ, Qasba SS, Timpone JG, Babel BS, Kasper MR, English JF, et al. Occupational transmission of Acinetobacter baumannii from a United States serviceman wounded in Iraq to a health care worker. Clin Infect Dis Off Publ Infect Dis Soc Am. 2008;47(4):439–43. doi: 10.1086/589247.CrossRefGoogle Scholar
  6. 6.
    Keen EF 3rd, Mende K, Yun HC, Aldous WK, Wallum TE, Guymon CH, et al. Evaluation of potential environmental contamination sources for the presence of multidrug-resistant bacteria linked to wound infections in combat casualties. Infect Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2012;33(9):905–11. doi: 10.1086/667382.CrossRefGoogle Scholar
  7. 7.
    Griffith ME, Ceremuga JM, Ellis MW, Guymon CH, Hospenthal DR, Murray CK. Acinetobacter skin colonization of US Army soldiers. Infect Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2006;27(7):659–61. doi: 10.1086/506596.CrossRefGoogle Scholar
  8. 8.
    Griffith ME, Lazarus DR, Mann PB, Boger JA, Hospenthal DR, Murray CK. Acinetobacter skin carriage among US army soldiers deployed in Iraq. Infect Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2007;28(6):720–2. doi: 10.1086/518966.CrossRefGoogle Scholar
  9. 9.
    Murray CK, Roop SA, Hospenthal DR, Dooley DP, Wenner K, Hammock J, et al. Bacteriology of war wounds at the time of injury. Mil Med. 2006;171(9):826–9.CrossRefPubMedGoogle Scholar
  10. 10.
    • Scott P, Deye G, Srinivasan A, Murray C, Moran K, Hulten E, et al. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin Infect Dis Off Publ Infect Dis Soc Am. 2007;44(12):1577–84. doi: 10.1086/518170. Epidemiologic investigation demonstrating clonal spread of Acinetobacter across multiple military medical facilities. CrossRefGoogle Scholar
  11. 11.
    Ake J, Scott P, Wortmann G, Huang XZ, Barber M, Wang Z, et al. Gram-negative multidrug-resistant organism colonization in a US military healthcare facility in Iraq. Inf Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2011;32(6):545–52. doi: 10.1086/660015.CrossRefGoogle Scholar
  12. 12.
    Griffith ME, Gonzalez RS, Holcomb JB, Hospenthal DR, Wortmann GW, Murray CK. Factors associated with recovery of Acinetobacter baumannii in a combat support hospital. Inf Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2008;29(7):664–6. doi: 10.1086/589585.CrossRefGoogle Scholar
  13. 13.
    Sutter DE, Bradshaw LU, Simkins LH, Summers AM, Atha M, Elwood RL, et al. High incidence of multidrug-resistant gram-negative bacteria recovered from Afghan patients at a deployed US military hospital. Infect Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2011;32(9):854–60. doi: 10.1086/661284.CrossRefGoogle Scholar
  14. 14.
    Yun HC, Branstetter JG, Murray CK. Osteomyelitis in military personnel wounded in Iraq and Afghanistan. The Journal of trauma. 2008;64(2 Suppl):S163–S168; discussion S8. doi: 10.1097/TA.0b013e318160868c.CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson EN, Burns TC, Hayda RA, Hospenthal DR, Murray CK. Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis Off Publ Infect Dis Soc Am. 2007;45(4):409–15. doi: 10.1086/520029.CrossRefGoogle Scholar
  16. 16.
    Weintrob AC, Murray CK, Lloyd B, Li P, Lu D, Miao Z, et al. Active surveillance for asymptomatic colonization with multidrug-resistant gram negative bacilli among injured service members—a three year evaluation. MSMR. 2013;20(8):17–22.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hospenthal DR, Crouch HK, English JF, Leach F, Pool J, Conger NG, et al. Multidrug-resistant bacterial colonization of combat-injured personnel at admission to medical centers after evacuation from Afghanistan and Iraq. J Trauma. 2011;71(1 Suppl):S52–7. doi: 10.1097/TA.0b013e31822118fb.CrossRefPubMedGoogle Scholar
  18. 18.
    Vento TJ, Cole DW, Mende K, Calvano TP, Rini EA, Tully CC, et al. Multidrug-resistant gram-negative bacteria colonization of healthy US military personnel in the US and Afghanistan. BMC Infect Dis. 2013;13:68. doi: 10.1186/1471-2334-13-68.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    • Warkentien T, Rodriguez C, Lloyd B, Wells J, Weintrob A, Dunne JR, et al. Invasive mold infections following combat-related injuries. Clin Inf Dis Off Publ Infect Dis Soc Am. 2012;55(11):1441–9. doi: 10.1093/cid/cis749. Initial description of emerging trend of invasive fungal infections in combat casualties evacuated from Afghanistan. CrossRefGoogle Scholar
  20. 20.
    Lloyd B, Weintrob AC, Rodriguez C, Dunne JR, Weisbrod AB, Hinkle M, et al. Effect of early screening for invasive fungal infections in U.S. service members with explosive blast injuries. Surg Infect. 2014; doi: 10.1089/sur.2012.245.
  21. 21.
    Rodriguez CJ, Weintrob AC, Shah J, Malone D, Dunne JR, Weisbrod AB, et al. Risk factors associated with invasive fungal infections in combat trauma. Surg Infect. 2014; doi: 10.1089/sur.2013.123.
  22. 22.
    •• Tribble DR, Conger NG, Fraser S, Gleeson TD, Wilkins K, Antonille T, et al. Infection-associated clinical outcomes in hospitalized medical evacuees after traumatic injury: trauma infectious disease outcome study. J Trauma. 2011;71(1 Suppl):S33–42. doi: 10.1097/TA.0b013e318221162e. Prospective observational study describing clinical infectious disease complications in combat casualties. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Napierala MA, Rivera JC, Burns TC, Murray CK, Wenke JC, Hsu JR, et al. Infection reduces return-to-duty rates for soldiers with type III open tibia fractures. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S194–7. doi: 10.1097/TA.0000000000000364.CrossRefPubMedGoogle Scholar
  24. 24.
    Burns TC, Stinner DJ, Mack AW, Potter BK, Beer R, Eckel TT, et al. Microbiology and injury characteristics in severe open tibia fractures from combat. J Trauma Acute Care Surg. 2012;72(4):1062–7. doi: 10.1097/TA.0b013e318241f534.CrossRefPubMedGoogle Scholar
  25. 25.
    Johnson EN, Marconi VC, Murray CK. Hospital-acquired device-associated infections at a deployed military hospital in Iraq. J Trauma. 2009;66(4 Suppl):S157–63. doi: 10.1097/TA.0b013e31819cdfb7.CrossRefPubMedGoogle Scholar
  26. 26.
    Yun HC, Weintrob AC, Conger NG, Li P, Lu D, Tribble DR, et al. Healthcare-associated pneumonia among U.S. combat casualties, 2009 to 2010. Mil Med. 2015;180(1):104–10. doi: 10.7205/MILMED-D-14-00209.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ressner RA, Murray CK, Griffith ME, Rasnake MS, Hospenthal DR, Wolf SE. Outcomes of bacteremia in burn patients involved in combat operations overseas. J Am Coll Surg. 2008;206(3):439–44. doi: 10.1016/j.jamcollsurg.2007.09.017.CrossRefPubMedGoogle Scholar
  28. 28.
    •• Hospenthal DR, Murray CK, Andersen RC, Bell RB, Calhoun JH, Cancio LC, et al. Guidelines for the prevention of infections associated with combat-related injuries: 2011 update: endorsed by the Infectious Diseases Society of America and the Surgical Infection Society. J Trauma. 2011;71(2 Suppl 2):S210–34. doi: 10.1097/TA.0b013e318227ac4b. Most recent guideline for preventing infections in combat casualties. CrossRefPubMedGoogle Scholar
  29. 29.
    •• Hospenthal DR, Murray CK, Andersen RC, Blice JP, Calhoun JH, Cancio LC, et al. Guidelines for the prevention of infection after combat-related injuries. J Trauma. 2008;64(3 Suppl):S211–20. doi: 10.1097/TA.0b013e318163c421. Seminal guideline for prevention of infection after combat injury. CrossRefPubMedGoogle Scholar
  30. 30.
    Huh J, Stinner DJ, Burns TC, Hsu JR, Late Amputation Study T. Infectious complications and soft tissue injury contribute to late amputation after severe lower extremity trauma. J Trauma. 2011;71(1 Suppl):S47–51. doi: 10.1097/TA.0b013e318221181d.CrossRefPubMedGoogle Scholar
  31. 31.
    Masini BD, Owens BD, Hsu JR, Wenke JC. Rehospitalization after combat injury. J Trauma. 2011;71(1 Suppl):S98–102. doi: 10.1097/TA.0b013e3182218fbc.CrossRefPubMedGoogle Scholar
  32. 32.
    Krueger CA, Rivera JC, Tennent DJ, Sheean AJ, Stinner DJ, Wenke JC. Late amputation may not reduce complications or improve mental health in combat-related, lower extremity limb salvage patients. Injury. 2015;46(8):1527–32. doi: 10.1016/j.injury.2015.05.015.CrossRefPubMedGoogle Scholar
  33. 33.
    Weintrob AC, Weisbrod AB, Dunne JR, Rodriguez CJ, Malone D, Lloyd BA, et al. Combat trauma-associated invasive fungal wound infections: epidemiology and clinical classification. Epidemiol Infect. 2014:1–11. doi: 10.1017/S095026881400051X.
  34. 34.
    Gomez R, Murray CK, Hospenthal DR, Cancio LC, Renz EM, Holcomb JB, et al. Causes of mortality by autopsy findings of combat casualties and civilian patients admitted to a burn unit. J Am Coll Surg. 2009;208(3):348–54. doi: 10.1016/j.jamcollsurg.2008.11.012.CrossRefPubMedGoogle Scholar
  35. 35.
    Yun HC, Murray CK. Infection prevention in the deployed environment. US Army Med Dep J. 2016;2–16:114–8.Google Scholar
  36. 36.
    • Landrum ML, Murray CK. Ventilator associated pneumonia in a military deployed setting: the impact of an aggressive infection control program. J Trauma. 2008;64(2 Suppl):S123–7. doi: 10.1097/TA.0b013e31816086dc. discussion S7–8. Description of success of basic infection prevention procedures in a deployed hospital. CrossRefPubMedGoogle Scholar
  37. 37.
    • Hospenthal DR, Green AD, Crouch HK, English JF, Pool J, Yun HC, et al. Infection prevention and control in deployed military medical treatment facilities. J Trauma. 2011;71(2 Suppl 2):S290–8. doi: 10.1097/TA.0b013e318227add8. Guideline for appropriate infection prevention in deployed hospitals. CrossRefPubMedGoogle Scholar
  38. 38.
    • Investigators F, Bhandari M, Jeray KJ, Petrisor BA, Devereaux PJ, Heels-Ansdell D, et al. A trial of wound irrigation in the initial management of open fracture wounds. N Engl J Med. 2015;373(27):2629–41. doi: 10.1056/NEJMoa1508502. Multicenter randomized controlled trial of wound irrigation using high, low, and very low pressure and with castile soap vs saline. CrossRefGoogle Scholar
  39. 39.
    Pollak AN. Timing of debridement of open fractures. J Am Acad Orthop Surg. 2006;14(10 Spec):S48–51.CrossRefPubMedGoogle Scholar
  40. 40.
    • Weber D, Dulai SK, Bergman J, Buckley R, Beaupre LA. Time to initial operative treatment following open fracture does not impact development of deep infection: a prospective cohort study of 736 subjects. J Orthop Trauma. 2014;28(11):613–9. doi: 10.1097/BOT.0000000000000197. Prospective observational study demonstrating no association between time to debridement and infection. CrossRefPubMedGoogle Scholar
  41. 41.
    Dharm-Datta S, McLenaghan J. Medical lessons learnt from the US and Canadian experience of treating combat casualties from Afghanistan and Iraq. J R Army Med Corps. 2013;159(2):102–9. doi: 10.1136/jramc-2013-000032.CrossRefPubMedGoogle Scholar
  42. 42.
    Hauser CJ, Adams CA Jr, Eachempati SR, Council of the Surgical Infection S. Surgical Infection Society guideline: prophylactic antibiotic use in open fractures: an evidence-based guideline. Surg Infect. 2006;7(4):379–405. doi: 10.1089/sur.2006.7.379.CrossRefGoogle Scholar
  43. 43.
    Gilbert LJ, Li P, Murray CK, Yun HC, Aggarwal D, Weintrob AC, et al. Multidrug-resistant gram-negative bacilli colonization risk factors among trauma patients. Diagn Microbiol Infect Dis. 2016;84(4):358–60. doi: 10.1016/j.diagmicrobio.2015.12.014.CrossRefPubMedGoogle Scholar
  44. 44.
    Joint Theater Trauma System Clinical Practice Guideline. Treatment of suspected invasive fungal infection in war wounds. 2012. Accessed July 9 2014.
  45. 45.
    • Joint Theater Trauma System Clinical Practice Guideline. Invasive fungal infection in war wounds. 2016. Most recent guideline for preventing, diagnosing and treating IFI in combat casualties. Accessed 2 July 2017.
  46. 46.
    Neblett Fanfair R, Benedict K, Bos J, Bennett SD, Lo YC, Adebanjo T, et al. Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N Engl J Med. 2012;367(23):2214–25. doi: 10.1056/NEJMoa1204781.CrossRefPubMedGoogle Scholar
  47. 47.
    Warkentien TE, Shaikh F, Weintrob AC, Rodriguez CJ, Murray CK, Lloyd BA, et al. Impact of Mucorales and other invasive molds on clinical outcomes of polymicrobial traumatic wound infections. J Clin Microbiol. 2015;53(7):2262–70. doi: 10.1128/JCM.00835-15.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Barsoumian A, Sanchez CJ, Mende K, Tully CC, Beckius ML, Akers KS, et al. In vitro toxicity and activity of Dakin’s solution, mafenide acetate, and amphotericin B on filamentous fungi and human cells. J Orthop Trauma. 2013;27(8):428–36. doi: 10.1097/BOT.0b013e3182830bf9.CrossRefPubMedGoogle Scholar
  49. 49.
    Benedict K, Park BJ. Invasive fungal infections after natural disasters. Emerg Infect Dis. 2014;20(3):349–55. doi: 10.3201/eid2003.131230.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Andresen D, Donaldson A, Choo L, Knox A, Klaassen M, Ursic C, et al. Multifocal cutaneous mucormycosis complicating polymicrobial wound infections in a tsunami survivor from Sri Lanka. Lancet. 2005;365(9462):876–8. doi: 10.1016/S0140-6736(05)71046-1.CrossRefPubMedGoogle Scholar
  51. 51.
    Tribble DR, Rodriguez CJ, Weintrob AC, Shaikh F, Aggarwal D, Carson ML, et al. Environmental factors related to fungal wound contamination after combat trauma in Afghanistan, 2009–2011. Emerg Infect Dis. 2015;21(10):1759–69. doi: 10.3201/eid2110.141759.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Joint Trauma System Clinical Practice Guideline. Frozen and deglycerolized red blood cells. 2016. Accessed 2 July 2017.
  53. 53.
    Joint Theater Trauma System Clinical Practice Guideline. Fresh whole blood (fwb) transfusion. 2012. Accessed July 9 2014.
  54. 54.
    Strandenes G, Berseus O, Cap AP, Hervig T, Reade M, Prat N, et al. Low titer group O whole blood in emergency situations. Shock. 2014;41(Suppl 1):70–5. doi: 10.1097/SHK.0000000000000150.CrossRefPubMedGoogle Scholar
  55. 55.
    Stinner DJ, Hsu JR, Wenke JC. Negative pressure wound therapy reduces the effectiveness of traditional local antibiotic depot in a large complex musculoskeletal wound animal model. J Orthop Trauma. 2012;26(9):512–8. doi: 10.1097/BOT.0b013e318251291b.CrossRefPubMedGoogle Scholar
  56. 56.
    Murray CK, Obremskey WT, Hsu JR, Andersen RC, Calhoun JH, Clasper JC, et al. Prevention of infections associated with combat-related extremity injuries. J Trauma Inj Infect Crit Care. 2011;71:S235–S57. doi: 10.1097/TA.0b013e318227ac5f.CrossRefGoogle Scholar
  57. 57.
    Lalliss SJ, Stinner DJ, Waterman SM, Branstetter JG, Masini BD, Wenke JC. Negative pressure wound therapy reduces pseudomonas wound contamination more than Staphylococcus aureus. J Orthop Trauma. 2010;24(9):598–602. doi: 10.1097/BOT.0b013e3181ec45ba.CrossRefPubMedGoogle Scholar
  58. 58.
    Moues CM, Vos MC, van den Bemd GJ, Stijnen T, Hovius SE. Bacterial load in relation to vacuum-assisted closure wound therapy: a prospective randomized trial. Wound Repair Regen. 2004;12(1):11–7. doi: 10.1111/j.1067-1927.2004.12105.x.CrossRefPubMedGoogle Scholar
  59. 59.
    Chang D, Garcia RA, Akers KS, Mende K, Murray CK, Wenke JC et al. Activity of gallium meso- and protoporphyrin IX against biofilms of multidrug-resistant Acinetobacter baumannii isolates. Pharmaceuticals (Basel). 2016;9(1). doi: 10.3390/ph9010016.
  60. 60.
    Wang Y, Wu X, Chen J, Amin R, Lu M, Bhayana B, et al. Antimicrobial blue light inactivation of gram-negative pathogens in biofilms: in vitro and in vivo studies. J Infect Dis. 2016;213(9):1380–7. doi: 10.1093/infdis/jiw070.
  61. 61.
    Dai T, Vrahas MS, Murray CK, Hamblin MR. Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections? Expert Rev Anti-Infect Ther. 2012;10(2):185–95. doi: 10.1586/eri.11.166.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Connaughton A, Childs A, Dylewski S, Sabesan VJ. Biofilm disrupting technology for orthopedic implants: what’s on the horizon? Front Med (Lausanne). 2014;1:22. doi: 10.3389/fmed.2014.00022.Google Scholar
  63. 63.
    Fiske LC, Homeyer DC, Zapor M, Hartzell J, Warkentien T, Weintrob AC, et al. Isolation of rapidly growing nontuberculous mycobacteria in wounds following combat-related injury. Mil Med. 2016;181(6):530–6. doi: 10.7205/MILMED-D-14-00731.CrossRefPubMedGoogle Scholar
  64. 64.
    van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016;63(2):234–41. doi: 10.1093/cid/ciw243.CrossRefGoogle Scholar
  65. 65.
    White BK, Mende K, Weintrob AC, Beckius ML, Zera WC, Lu D, et al. Epidemiology and antimicrobial susceptibilities of wound isolates of obligate anaerobes from combat casualties. Diagn Microbiol Infect Dis. 2016;84(2):144–50. doi: 10.1016/j.diagmicrobio.2015.10.010.CrossRefPubMedGoogle Scholar
  66. 66.
    Blyth DM, Mende K, Weintrob AC, Beckius ML, Zera WC, Bradley W, et al. Resistance patterns and clinical significance of Candida colonization and infection in combat-related injured patients from Iraq and Afghanistan. Open Forum Infect Dis. 2014;1(3):ofu109. doi: 10.1093/ofid/ofu109.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wallum TE, Yun HC, Rini EA, Carter K, Guymon CH, Akers KS, et al. Pathogens present in acute mangled extremities from Afghanistan and subsequent pathogen recovery. Mil Med. 2015;180(1):97–103. doi: 10.7205/MILMED-D-14-00301.CrossRefPubMedGoogle Scholar

Copyright information

© US Government (outside the USA) 2017

Authors and Affiliations

  • Heather C. Yun
    • 1
    • 2
    Email author
  • Dana M. Blyth
    • 1
    • 2
  • Clinton K. Murray
    • 1
    • 2
  1. 1.San Antonio Military Medical CenterFort Sam HoustonUSA
  2. 2.Uniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations