Skip to main content
Log in

Multicriteria Comparison of Ozonation, Membrane Filtration, and Activated Carbon for the Treatment of Recalcitrant Organics in Industrial Effluent: A Conceptual Study

  • Technical Note
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

Urban wastewater and industrial effluents are treated by conventional technologies according to their biological or physicochemical properties. Yet new approaches to waste treatment are needed due to the problems associated with micropollutants (phenolic compounds, organochlorines and organofluorines, antibiotics, etc.) present in surface water. Some of these contaminants are refractory to commonly used wastewater treatments, and could have long-term impacts on the environment and on human health. Efficient waste treatments are needed to tackle this issue without adversely affecting the cost-effective environmental balance. This study aimed to define a strategy to choose the best waste treatment process based on the nature of the wastewater and the treatment objectives. A customizable methodology was devised to analyze and compare three different technologies (ozonation, membrane filtration, and activated carbon adsorption) to choose the best treatment strategy based on environmental, technical, and economic criteria. These various criteria were compiled by weighting and rating them to generate a scoring table of the overall performance of the technologies in question. A conceptual study was then performed to test the methodology designed for the treatment of an industrial effluent. The results show that activated carbon adsorption yielded the best results when the spent carbon was reactivated. Membrane filtration resulted in a good water quality that, when reused, improved its score. Based on these results, a decision tree was devised to determine the best strategy for the treatment of organic pollutants in order to reach reuse or discharge objectives.

Highlights

  • Advance treatments are efficient at treating recalcitrant organics.

  • A multicriteria approach was devised.

  • Optimization of these treatments is needed to limit environmental issues.

  • GAC with reactivation of the carbon resulted in the best process performance.

  • Internal water reuse increases the overall performance of a process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of Data and Materials

A Supplementary materials section is available, all the calculations performed are explained, and any supplementary questions can be sent to the email address provided.

Code Availability

No software was used in this publication.

References

  • European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy, 23 October 2000

  • European Commision (2008) Directive 2008/105/EC of the European Parliament and of the Council, Environmental Quality Standards in the Field of Water Policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC, and amending Directive 2000/60/EC of the European Parliament and of the Council of 2008, 16 December 2008

  • European Commision (2013) Directive 2013/39/EU of the European parliament and of the Council, amending Directives 2000/60/EC and 2008/105/EC as regards Priority Substances in the Field of Water Policy of 2013, 12 August 2013

  • Aemig Q, Helias A, Patureau D (2021) Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. Water Res 188:116524. https://doi.org/10.1016/j.watres.2020.116524

    Article  Google Scholar 

  • Almaguer MA, Cruz YR, Da Fonseca FV (2021) Combination of advanced oxidation processes and microalgae aiming at recalcitrant wastewater treatment and algal biomass production: a review. Environ Process 8(2):483–509. https://doi.org/10.1007/S40710-020-00492-X

    Article  Google Scholar 

  • Andrade LH, Aguiar AO, Pires WL, Miranda GA, Teixeira LPT, Almeida GCC, Amaral MCS (2017) Nanofiltration and reverse osmosis applied to gold mining effluent treatment and reuse. Braz J Chem Eng 34(1):93–107. https://doi.org/10.1590/0104-6632.20170341s20150082

    Article  Google Scholar 

  • Andrade LH, Mendes FDS, Espindola JC, Amaral MCS (2015) Reuse of dairy wastewater treated by membrane bioreactor and nanofiltration: technical and economic feasibility. Braz J Chem Eng 32(3):735–747. https://doi.org/10.1590/0104-6632.20150323s00003133

    Article  Google Scholar 

  • AWWA, Perfluorinated Compounds Treatment And Removal. Retrieved 10/07/19 From https://www.Awwa.Org/Portals/0/AWWA/ETS/Resources/Awwapfcfactsheettreatmentandremoval.Pdf

  • Baalbaki Z, Sultana T, Metcalfe C, Yargeau V (2017) Estimating removals of contaminants of emerging concern from wastewater treatment plants: the critical role of wastewater hydrodynamics. Chemosphere 178:439–448. https://doi.org/10.1016/J.Chemosphere.2017.03.070

    Article  Google Scholar 

  • Baig S, Mouchet P (2017) Oxydation et réduction appliquées au traitement de l’eau—Ozone—Autres Oxydants—Oxydation avancée—Réducteurs. Techniques de l’ingénieur, W2702 V1

  • Bayer P, Heuer E, Karl U, Finkel M (2005) Economical and ecological comparison of Granular Activated Carbon (GAC) adsorber refill strategies. Water Res 39(9):1719–1728. https://doi.org/10.1016/J.Watres.2005.02.005

    Article  Google Scholar 

  • Besnault S, Martin-Ruel S, Baig S, Heiniger B, Esperanza M, Budzinski H, Miege C, Le Menach K, Dherret L, Roussel Galle A, Coquery M (2015) Evaluation technique, économique et environnementale de procédés de traitement complémentaire avancés pour l’élimination des micropolluants. TSM 3:67–83

    Article  Google Scholar 

  • Besnault S, Martin S (2011) Etat de l’art sur les procédés avancés intensifs pour la réduction de micropolluants dans les eaux usées traitées (Rapport Bibliographique). projet ARMISTIQ—Action A

  • Besnault S, Martin S, Baig S, Budzinski H, Le Menach K, Esperanza M, Noyon N, Gogot C, Miege C, Dherret L, Roussel Galle A, Coquery M (2014) Réduction des micropolluants par les traitements complémentaires: procédés d’oxydation avancée, adsorption sur charbon actif. projet ARMISTIQ—Action A

  • Bhandari VM, Sorokhaibam LG, Ranade VV (2016) Industrial wastewater treatment for fertilizer industry—A case study. Desalination Water Treat. https://doi.org/10.1080/19443994.2016.1186399

    Article  Google Scholar 

  • Bick A, Gillerman L, Manor Y, Oron G (2012) Economic assessment of an integrated membrane system for secondary effluent polishing for unrestricted reuse. Water 4(1):219–236. https://doi.org/10.3390/W4010219

    Article  Google Scholar 

  • Borrull J, Colom A, Fabregas J, Borrull F, Pocurull E (2020) Liquid chromatography tandem mass spectrometry determination of 34 priority and emerging pollutants in water from the influent and effluent of a drinking water treatment plant. J Chromatogr A 1621:461090. https://doi.org/10.1016/J.Chroma.2020.461090

    Article  Google Scholar 

  • Brinkmann T, Santonja GG, Yükseler H, Roudier S, Delgado Sancho L (2016) Best Available Techniques (BAT) Reference Document For Common. Waste Water And Waste Gas Treatment/Management Systems In The Chemical Sector

  • Bui XT, Vo TP, Ngo HH, Guo WS, Nguyen TT (2016) Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ 563–564:1050–1067. https://doi.org/10.1016/j.scitotenv.2016.04.191

    Article  Google Scholar 

  • Burn S, Hoang M, Zarzo D, Olewniak F, Campos E, Bolto B, Barron O (2015) Desalination Techniques—A review of the opportunities for desalination in agriculture. Desalination 364:2–16. https://doi.org/10.1016/J.Desal.2015.01.041

    Article  Google Scholar 

  • Chemviron (2019) Réactivation du charbon actif. C. Peyrelasse, Interviewer

    Google Scholar 

  • Coquery M, Eusèbe M, Ribeiro L, Choubert JM, Miège C (2008) Removal efficiency of pharmaceuticals and personal care products with varying wastewater treatment processes and operating conditions—Conception of a database and first results. Water Sci Technol 57(1):49–56. https://doi.org/10.2166/Wst.2008.823

    Article  Google Scholar 

  • Cristóvão RO, Botelho CM, Martins RJE, Loureiro JM, Boaventura RAR (2015) Fish canning industry wastewater treatment for water reuse—A case study. J Clean Prod 87:603–612. https://doi.org/10.1016/J.Jclepro.2014.10.076

    Article  Google Scholar 

  • Cummings L, Matarazzo A, Nelson N, Sickels F, Storms CT (2015) Recommendation on perfluorinated compound treatment options for drinking water. New Jersey Drinking Water Quality Institute Treatment Subcommittee. https://www.nj.gov/dep/watersupply/pdf/pfna-pfc-treatment.pdf. Accessed 7 January 2022

  • De Franceschi L (2018) Ozone, O3 Plus AOP: An optimized treatment line for COD & TOC removal. Wahua, from lab tests to full scale plant. Pan American Group Conference. International Ozone Association. Las Vegas, Nevada

  • Du B, Price AE, Scott WC, Kristofco LA, Ramirez AJ, Chambliss CK, Yelderman JC, Brooks BW (2014) Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent. Sci Total Environ 466–467:976–984. https://doi.org/10.1016/J.Scitotenv.2013.07.126

    Article  Google Scholar 

  • Dubber D, Gray NF (2010) Replacement of Chemical Oxygen Demand (COD) with Total Organic Carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J Environ Sci Health A Tox Hazard Subst Environ Eng 45(12):1595–1600. https://doi.org/10.1080/10934529.2010.506116

    Article  Google Scholar 

  • Dupont (2020) Estimated percent rejection of various solutes by filmtec™ membranes. In Dupont (Ed.), Tech Fact (Form No. 45-D01926-En, Rev. 2 Ed.)

  • Fast SA, Gude VG, Truax DD, Martin J, Magbanua BS (2017) A critical evaluation of advanced oxidation processes for emerging contaminants removal. Environ Process 4(1):283–302. https://doi.org/10.1007/s40710-017-0207-1

    Article  Google Scholar 

  • Flores C, Ventura F, Martin-Alonso J, Caixach J (2013) Occurrence of Perfluorooctane Sulfonate (PFOS) And Perfluorooctanoate (PFOA) In N.E. spanish surface waters and Their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Sci Total Environ 461–462:618–626. https://doi.org/10.1016/J.Scitotenv.2013.05.026

    Article  Google Scholar 

  • Fono L, Mcdonald S (2008) Emerging compounds: a concern for water and wastewater utilities. J AWWA (Am WATER Work As) 100(11):50–57

    Article  Google Scholar 

  • Melin G (1999) Treatment technologies for removal of Methyl Tertiarybutyl Ether (MTBE) from drinking water: air Stripping, advanced oxidation processes, granular activated carbon and synthetic resin sorbents, vol CA. Center for groundwater restoration and protection, National water Research Institute

  • Gong C, Huang H, Qian Y, Zhang Z, Wu H (2017) Integrated electrocoagulation and membrane filtration for PAH removal from realistic industrial wastewater: effectiveness and mechanisms. RSC Adv 7(83):52366–52374. https://doi.org/10.1039/C7ra09372a

    Article  Google Scholar 

  • Guo T, Englehardt J, Wu T (2014) Review of cost versus scale: water and wastewater treatment and reuse processes. Water Sci Technol 69(2):223–234. https://doi.org/10.2166/Wst.2013.734

    Article  Google Scholar 

  • Guo C, Chang H, Liu B, He Q, Xiong B, Kumar M, Zydney AL (2018) A combined ultrafiltration—reverse osmosis process for external reuse of Weiyuan shale gas flowback and produced water. Environ Sci Water Res Technol 4(7):942–955. https://doi.org/10.1039/C8ew00036k

    Article  Google Scholar 

  • Guyer JP (2011) Introduction to advanced wastewater treatment (Course No: C04–020). https://www.Cedengineering.Com/Userfiles/An%20Introduction%20to%20Advanced%20Wastewater%20Treatment%20R1.Pdf. Accessed 10 November 2021

  • Hamdi El Najjar N, Touffet A, Deborde M, Journel R, Karpel Vel Leitner N (2014) Kinetics of paracetamol oxidation by ozone and hydroxyl radicals, Formation of transformation products and toxicity. Sep Purif Technol 136:137–143. https://doi.org/10.1016/J.Seppur.2014.09.004

    Article  Google Scholar 

  • Hansen SP, Gumerman RC, Culp RL (1979) Estimating water treatment costs. Volume 3. Cost curves applicable to 2,500 Gpd To 1 mgd treatment plants

  • IRH (2010) Etude sur les coûts de réduction des rejets de substances toxiques. Agence de l’eau Rhône Méditerranée Corse

  • Jönsson J, Camm R, Hall T (2013) Removal and degradation of glyphosate in water treatment: a review. JJ Water Supply Res Techno-Aqua 62(7):395–408. https://doi.org/10.2166/Aqua.2013.080

    Article  Google Scholar 

  • Koroneos C, Dompros A, Roumbas G (2007) Renewable energy driven desalination systems modelling. J Clean Prod 15(5):449–464. https://doi.org/10.1016/J.Jclepro.2005.07.017

    Article  Google Scholar 

  • Landry Carter M (2017) Le Traitement d’eaux de détoxication de bois traité par procédés d’oxydation simple et avancée. Université de Sherbrooke

  • Lenntech. Adsorption / Active Carbon. https://www.Lenntech.Com/Library/Adsorption/Adsorption.Htm. Accessed 10 November 2021

  • Li Y, Zhang S, Zhang W, Xiong W, Ye Q, Hou X, Wang C, Wang P (2019) Life cycle assessment of advanced wastewater treatment processes: involving 126 pharmaceuticals and personal care products in life cycle inventory. J Environ Manage 238:442–450. https://doi.org/10.1016/J.Jenvman.2019.01.118

    Article  Google Scholar 

  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. https://doi.org/10.1016/J.Scitotenv.2013.12.065

    Article  Google Scholar 

  • Machuca-Martínez F, Almansa-Ortegón M, Manyoma-Velázquez PC (2020) Multi-criteria analysis for the selection of advanced oxidation technologies in the treatment of emerging pollutants. Respuestas 25(2):16–25. https://doi.org/10.22463/0122820x.2347

    Article  Google Scholar 

  • Mahamuni NN, Adewuyi YG (2010) Advanced Oxidation Processes (Aops) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17(6):990–1003. https://doi.org/10.1016/J.Ultsonch.2009.09.005

    Article  Google Scholar 

  • Margot J (2014) Traitement des micropolluants dans les eaux usées: bases théoriques et état de la recherche. Micropolluants Dans Les Eaux Usées, Lausanne

    Google Scholar 

  • Margot J, Kienle C, Magnet A, Weil M, Rossi L, De Alencastro LF, Abegglen C, Thonney D, Chevre N, Sharer M, Barry DA (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci Total Environ 461–462:480–498. https://doi.org/10.1016/J.Scitotenv.2013.05.034

    Article  Google Scholar 

  • Margot J, Magnet A, Thonney D, Chèvre N, De Alencastro F, Rossi L (2011) Traitement des micropolluants dans les eaux usées –. Rapport final sur les essais pilotes à la STEP de Vidy. (Lausanne)

  • Mendret J, Azais A, Favier T, Brosillon S (2019) Urban wastewater reuse using a coupling between nanofiltration and ozonation: techno-economic assessment. Chem Eng Res Des 145:19–28. https://doi.org/10.1016/J.Cherd.2019.02.034

    Article  Google Scholar 

  • Meng XL, Qu JH, Yu LH (2013) Study on the assessment method of wastewater treatment technologies based on comprehensive scoring method. Adv Mater Res 788:418–421. https://doi.org/10.4028/www.Scientific.Net/AMR.788.418

    Article  Google Scholar 

  • Metz F, Ingold K (2014) Sustainable wastewater management: is it possible to regulate micropollution in the future by learning from the past ? A policy analysis. Sustainability 6:1992–2012. https://doi.org/10.3390/Su6041992

    Article  Google Scholar 

  • Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hubner U (2018) Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res 139:118–131. https://doi.org/10.1016/J.Watres.2018.03.042

    Article  Google Scholar 

  • Mundy B, Kuhnel B, Hunter G, Jarnis R, Funk D, Walker S, Burns N, Drago J, Nezgod W, Huang J, Rakness K, Jasim S, Joost R, Kim R, Muri J, Nattress J, Oneby M, Sosebee A, Thompson C, Walsh M, Schulz C (2018) A review of ozone systems costs for municipal applications. Report By The Municipal Committee—IOA Pan American Group. Ozone: Sci & Eng 40(4): 266–274. https://doi.org/10.1080/01919512.2018.1467187

  • Nijdam D, Blom J, Boere JA (1999) Environmental Life Cycle Assessment (LCA) of two advanced wastewater treatment techniques. Stud Surf Sci Catal 120:763–775. https://doi.org/10.1016/S0167-2991(99)80378-4

    Article  Google Scholar 

  • Norman (2018) Network of reference laboratories, Research centres and related organisations for monitoring of emerging environmental substances. Norman. https://www.Norman-Network.Net/?Q=Node/9. Accessed 17 september 2021

  • Oller I, Malato S, Sanchez-Perez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166. https://doi.org/10.1016/J.Scitotenv.2010.08.061

    Article  Google Scholar 

  • Otálora A, Lerma TA, Arrieta-Urango Y, Palencia M (2021) Emerging organic pollutants in aqueous environments: detection, monitoring, and removal techniques. J Sci Educ Technol app 10:92–153. https://doi.org/10.34294/J.Jsta.21.10.68

    Article  Google Scholar 

  • Pedro-Monzonis M, Solera A, Ferrer J, Andreu J, Estrela T (2016) Water accounting for stressed river basins based on water resources management models. Sci Total Environ 565:181–190. https://doi.org/10.1016/J.Scitotenv.2016.04.161

    Article  Google Scholar 

  • Pesqueira JFJR, Pereira MFR, Silva AMT (2020) Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: a review. J Clean Prod 261:121078. https://doi.org/10.1016/J.Jclepro.2020.121078

    Article  Google Scholar 

  • Plumlee MH, Stanford BD, Debroux J-F, Hopkins DC, Snyder SA (2014) Costs of advanced treatment in water reclamation. Ozone: Sci Eng 36(5):485–495. https://doi.org/10.1080/01919512.2014.921565

    Article  Google Scholar 

  • Rahman SM, Eckelman MJ, Onnis-Hayden A, Gu AZ (2018) Comparative life cycle assessment of advanced wastewater treatment processes for removal of chemicals of emerging concern. Environ Sci Technol 52(19):11346–11358. https://doi.org/10.1021/Acs.Est.8b00036

    Article  Google Scholar 

  • RECORD (2006) Association de bioprocédés à d’autres procédés dans le traitement Ex Situ de déchets et sols pollués, 227 p, n° 04–0416/1A.

  • Rizzo L, Malato S, Antakyali D, Beretsou VG, Dolic MB, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado Ribeiro AR, Mascolo G, McArdell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008. https://doi.org/10.1016/J.Scitotenv.2018.11.265

    Article  Google Scholar 

  • Ruel SM, Choubert JM, Esperanza M, Miège C, Navalón Madrigal P, Budzinski H, Le Ménach K, Lazarova V, Coquery M (2011) On-Site evaluation of the removal of 100 micro-pollutants through advanced wastewater treatment processes for reuse applications. Water Sci Technol 63(11):2486–2497. https://doi.org/10.2166/Wst.2011.470

    Article  Google Scholar 

  • Shahid MK, Kashif A, Fuwad A, Choi Y (2021) Current advances in treatment technologies for removal of emerging contaminants from water—A critical review. Coord Chem Rev 442:213993. https://doi.org/10.1016/J.Ccr.2021.213993

    Article  Google Scholar 

  • Shouman ER, Sorour M, Abulnour A (2015) Economics of renewable energy for water desalination in developing countries. Int J Econ Manag Sci 5:305. https://doi.org/10.4172/21626359.1000305

    Article  Google Scholar 

  • Smol M, Włodarczyk-Makuła M, Mielczarek K, Bohdziewicz J, Włóka D (2015) The use of reverse osmosis in the removal of PAHs from municipal landfill leachate. Polycycl Aromat Compd 36:20–39. https://doi.org/10.1080/10406638.2014.957403

    Article  Google Scholar 

  • Snyder SA, Wert EC, Hongxia L, Westerhoff P, Yoon Y (2007) Removal of EDCs and pharmaceuticals in drinking and reuse treatment processes. AWWA Research Foundation

  • Sudhakaran S, Lattemann S, Amy GL (2013) Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model atudies—A multi-criteria analysis study. Sci Total Environ 442:478–488. https://doi.org/10.1016/J.Scitotenv.2012.09.076

    Article  Google Scholar 

  • Teodosiu C, Gilca AF, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod 197:1210–1221. https://doi.org/10.1016/J.Jclepro.2018.06.247

    Article  Google Scholar 

  • Truc A (2007) Traitements tertiaires des effluents industriels. Techniques de l’ingénieur, Vol. G1310

  • Vasilachi I, Asiminicesei D, Fertu D, Gavrilescu M (2021) Occurrence and fate of emerging pollutants in water environment and options for their removal. Water 13(2):181. https://doi.org/10.3390/W13020181

    Article  Google Scholar 

  • Von Gunten U (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467. https://doi.org/10.1016/S0043-1354(02)00457-8

    Article  Google Scholar 

  • Wu QY, Zhou YT, Li W, Zhang X, Du Y, Hu HY (2019) Underestimated risk from ozonation of wastewater containing bromide: both organic byproducts and bromate contributed to the toxicity increase. Water Res 162:43–52. https://doi.org/10.1016/J.Watres.2019.06.054

    Article  Google Scholar 

  • Van Wyk B, Metais A, Madhavaram N (2017) Pulp & Paper mill enhancements for green productivity benefits. IPPTA AGM, Chennai, India

    Google Scholar 

  • Zaviska F (2011) Modélisation du traitement des micropolluants organiques par oxydation électrochimique. Université Du Québec

  • Zaviska F, Drogui P, Mercier G, Blais JF (2009) Procédés d’oxydation avancée dans le traitement des eaux et des effluents industriels: application à la dégradation des polluants réfractaires. Rev des Sci de l’Eau 22(4):461–573. https://doi.org/10.7202/038330ar

    Article  Google Scholar 

  • Zhu L (2015) Rejection of organic micropollutants by clean and fouled nanofiltration membranes. J Chem 2015:1–9. https://doi.org/10.1155/2015/934318

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the French Industry–University Cooperative Research Network on Environment and Waste (RECORD – www.record-net.org) for its contribution to the funding of this work and for providing industrial guidance and scientific supervision to the research.

Funding

This project was funded by the French Industry–University Cooperative Research Network on Environment and Waste (RECORD).

Author information

Authors and Affiliations

Authors

Contributions

Peyrelasse performed the calculations and wrote the publication; Lallement & Jacob reviewed the publication.

Corresponding author

Correspondence to Christine Peyrelasse.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors do not have any conflicts of interest or competing interests to declare.

Ethics Approval

No experimentations were performed for this publication.

Consent to Participate & Consent for Publication

All of the authors have been consulted in this regard before submission of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyrelasse, C., Jacob, M. & Lallement, A. Multicriteria Comparison of Ozonation, Membrane Filtration, and Activated Carbon for the Treatment of Recalcitrant Organics in Industrial Effluent: A Conceptual Study. Environ. Process. 9, 9 (2022). https://doi.org/10.1007/s40710-022-00563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40710-022-00563-1

Keywords

Navigation