Skip to main content
Log in

Assessment of Transient CFD Techniques for Virtual Thermal Manikins’ Breathing Simulations

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

A qualitative cross-analysis of three different computational fluid dynamics transient modelling techniques (“Unsteady Reynolds Averaged Navier Stokes - URANS”, “Detached Eddies Simulations - DES” and “Large Eddies Simulations - LES”) for flow simulation with virtual thermal manikins is presented. The interaction between the free convection flow, resulting from the heated manikin’s surface, and the exhalation/inhalation flow is modelled, under controlled room conditions. It has been shown in recent studies of the authors, that the steady-state simulations lead to over-prediction of the resultant velocity and temperature fields. For this reason, the implementation of transient simulation methods is recommended and implemented in the presented study, however, without validation with measured data. The comparison of temperature and velocity fields is the basis for the qualitative analyses made between the different simulation techniques. The achieved results in this qualitative assessment provide novel and valuable information on the integration of numerous simulation techniques. This is supported by the fact that these virtual thermal manikins represent complex assessment tools for virtual design of the human thermal comfort, as well as for virtual analyses of indoor air quality. In general, the numerical results showed a good correlation between the different techniques, especially for the exhalation stage from the breathing cycle, in the breathing zone of the manikin. Furthermore, in both DES and LES methods, significant flow similarities were demonstrated in the zones dominated by the manikin’s free convection, while, for the URANS simulations, a sensible refraction of the thermal plume was observed in the zone above the head with shifting of almost 0.4 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bjørn E (1999) Simulation of human respiration with breathing thermal manikins, Proceedings of the 3rd International Meeting on Thermal Manikin Testing 3IMM, Stockholm, Sweden, 12–13 October: 78–81

  • Chai X, Mahesh K (2012) Dynamic k-equation model for large-eddy simulation of compressible flows. J Fluid Mech 699:385–413

    Article  Google Scholar 

  • Ivanov M (2015) Compact breathing simulation system, developed as additional functionality for thermal manikins. Rom J Build Serv 1(3):1–12

    Google Scholar 

  • Ivanov M, Mijorski S (2017) CFD modelling of flow interaction in the breathing zone of a virtual thermal manikin. Energy Procedia 112:240–251

    Article  Google Scholar 

  • Lin S (2015) Nasal Aerodynamics, http://emedicine.medscape.com/article/874822-overview#a1, Accessed 14 May 2015

  • Madsen T (1999) Development of a breathing thermal manikin, Proceedings of the 3rd International Meeting on Thermal Manikin Testing 3IMM, Stockholm, Sweden, 12–13 October: 73–77

  • Menter F (2011) Turbulence modelling for engineering flows, ANSYS Inc.

  • Mijorski S, Ivanov M (2017) Comparison of different CFD techniques for transient modelling of virtual breathing thermal manikins, Proceedings 15th International Conference on Environmental Science and Technology, Rhodes Island, Greece, 31 August to 2 September, ISSN 1106–5516, Manuscript ID: cest2017_00415

  • Nilsson H (2006) How to build and use a virtual thermal manikin based on real manikin methods, Sixth International Thermal Manikin and Modelling Meeting – October 2006, ISBN: 962-367-534-8: 180-193

  • Shur M, Spalart P, Strelets M, Travin A (1999) Detached-eddy simulation of an airfoil at high angle of attack, 4th International Symposium on Engineering Turbulence Modelling and Experiments 24–26 May 1999, Corsica, France: 669–678

  • Spalart P (2001) Young-person’s guide to detached-eddy simulations grids, NASA/CR-2001-21103, Boeing Commercial Airplanes, Seattle, Washington

  • Spalart P, Allmaras S (1994) A one-equation turbulence model for aerodynamic flows. Recherche Aerospatiale 1:5–21

    Google Scholar 

  • Venkatesh V (2017) Tutorial of convective heat transfer in a vertical slot, developed for OpenFOAM-4.x, CFD with OpenSource software, a course at Chalmers University of Technology: 1–45

  • Villafruela J, Olmedo I, San Jose J (2016) Influence of human breathing modes on airborne cross infection risk. Build Environ 106:340–351

    Article  Google Scholar 

Download references

Acknowledgements

An initial shorter version of the paper has been presented in the 15th International Conference on Environmental Science and Technology (CEST2017), Rhodes Island, Greece, 31 August to 2 September 2017 (Manuscript ID: cest2017_00415).

The presented study is supported by “RDS” at TU-Sofia, as part of the activities under the “Perspective leaders” project, with Contract № 181ПР0005-02, entitled: “Experimental comparison of the air jet characteristics during exhalation, with numerical results from developed virtual breathing thermal manikin”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ivanov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M., Mijorski, S. Assessment of Transient CFD Techniques for Virtual Thermal Manikins’ Breathing Simulations. Environ. Process. 6, 241–251 (2019). https://doi.org/10.1007/s40710-019-00351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-019-00351-4

Keywords

Navigation