Skip to main content
Log in

Modeling and Optimization of Ciprofloxacin Degradation by Hybridized Potassium Persulfate / Zero Valent-Zinc/Ultrasonic Process

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

The presence of pharmaceutical wastewaters containing antibiotic compounds is one of the new problems that need to be addressed in environmental pollution. This study examines ciprofloxacin removal from aqueous solutions through persulfate activated with hybridized ultrasonic waves and synthesized nano zero-valent zinc (NZVZ) particles. NZVZ particles were synthetized by chemical precipitation and stabilized by starch as an eco-friendly stabilizer before application. Modeling and optimization of the process were performed by central composite design (CCD) as a response surface methodology (RSM). The effect of operational parameters, such as initial pH, NZVZ dosage, and persulfate concentration on the removal of the antibiotic have been investigated. The results indicated 55% antibiotic removal observed with initial pH of 4.5, Potassium persulfate (KPS) concentration of 1200 mg/L and NZVZ dosage of 120 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboyeji OO (2013) Freshwater pollution in some Nigerian local communities, causes, consequences and probable solutions. Acad J Interdiscip Stud 2(13):111–117. doi:10.5901/ajis.2013.v2n13p111

    Google Scholar 

  • Anirudhan T, Deepa J (2017) Nano-zinc oxide incorporated graphene oxide/nano cellulose composite for the adsorption and photocatalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. Colloid Interface Sci 490:343–356. doi:10.1016/j.jcis.2016.11.042

    Article  Google Scholar 

  • Chen W-S, Su Y-C (2012) Removal of dinitrotoluenes in wastewater by sono-activated persulfate. Ultrason Sonochem 19:921–927. doi:10.1016/j.ultsonch.2011.12.012

    Article  Google Scholar 

  • Dutka M, Ditaranto M, Løvås T (2015) Application of a central composite design for the study of NOx emission performance of a low NOx burner. Energies 8:3606–3627. doi:10.3390/en8053606

    Article  Google Scholar 

  • Ghodke S, Sonawane S, Gaikawad R, Mohite K (2012) TiO2/nanoclay nanocomposite for phenol degradation in sonophotocatalytic reactor. The Ca Chem Engin 90(5):1153–1159. doi:10.1002/cjce.20630

    Article  Google Scholar 

  • Giri AS, Golder AK (2014) Ciprofloxacin degradation from aqueous solution by Fenton oxidation: reaction kinetics and degradation mechanisms. RSC Adv 4(13):6738–6745. doi:10.1039/C3RA45709E

    Article  Google Scholar 

  • Huang C-C, Lo S-L, Lien H-L (2012) Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant. Chem Eng J 203:95–100. doi:10.1016/j.cej.2012.07.002

    Article  Google Scholar 

  • Kasprzyk-Hordern B, Ziółek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal Environ 46(4):639–669. doi:10.1016/S0926-3373(03)00326-6

    Article  Google Scholar 

  • Khan S, Knapp CW, Beattie TK (2016) Antibiotic resistant bacteria found in municipal drinking water. Environ Proc 3(3):541–552. doi:10.1007/s40710-016-0149

    Article  Google Scholar 

  • Li Y, Li H, Zhang J, Quan G, Lan Y (2014) Efficient degradation of Congo red by sodium persulfate activated with zero-valent zinc. Water Air Soil Pollut 225:2121–2128. doi:10.1007/s11270-014-2121-8

    Article  Google Scholar 

  • Lin AY-C, Lin C-F, Chiou J-M, Hong PA (2009) O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. J Hazard Mater 171(1):452–458. doi:10.1016/j.jhazmat.2009.06.031

  • Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003

    Article  Google Scholar 

  • Niri MV et al (2015) Removal of natural organic matter (NOM) from an aqueous solution by NaCl and surfactant-modified clinoptilolite. J Water Health 13(2):394–405. doi:10.2166/wh.2014.075

    Article  Google Scholar 

  • Oh S-Y, Kang S-G, Kim D-W, Chiu PC (2011) Degradation of 2, 4-dinitrotoluene by persulfate activated with iron sulfides. Chem Eng 172(2):641–646. doi:10.1016/j.cej.2011.06.023

    Article  Google Scholar 

  • Peng H, Pan B, Wu M, Liu Y, Zhang D, Xing B (2012) Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity-and structure-controlled process. J Hazard Mater 233:89–96. doi:10.1016/j.jhazmat.2012.06.058

    Article  Google Scholar 

  • Pourmoslemi S, Mohammadi A, Kobarfard F, Assi N (2016) Photocatalytic removal of two antibiotic compounds from aqueous solutions using ZnO nanoparticles. Des Wat Treat 57(31):14774–14784. doi:10.1080/19443994.2015.1069215

    Article  Google Scholar 

  • Rahmani AR, Rezaeivahidian H, Almasi M, Shabanlo A, Almasi H (2016) A comparative study on the removal of phenol from aqueous solutions by electro–Fenton and electro–persulfate processes using iron electrodes. Res Chem Intermed 42(2):1441–1450. doi:10.1007/s11164-015-2095-1

    Article  Google Scholar 

  • Romero A, Santos A, Vicente F, González C (2010) Diuron abatement using activated persulphate: effect of pH, Fe (II) and oxidant dosage. Chem Eng J 162(1):257–265. doi:10.1016/j.cej.2010.05.044

  • Saien J, Soleymani A, Sun J (2011) Parametric optimization of individual and hybridized AOPs of Fe 2+/H2O2 and UV/S2O8 2− for rapid dye destruction in aqueous media. Desalination 279:298–305. doi:10.1016/j.desal.2011.06.024

    Article  Google Scholar 

  • Saien J, Osali M, Soleymani A (2015) UV/persulfate and UV/hydrogen peroxide processes for the treatment of salicylic acid: effect of operating parameters, kinetic, and energy consumption. Desalin Water Treat 56:3087–3095. doi:10.1080/19443994.19442014.19963156

    Google Scholar 

  • Sayed M, Ismail M, Khan S, Tabassum S, Khan HM (2016) Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways. Environ Technol 37(5):590–602. doi:10.1080/09593330.2015.1075597

    Article  Google Scholar 

  • Smith JE et al (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9(7):835–845. doi:10.1111/j.1461-0248.2006.00937

    Article  Google Scholar 

  • Soleymani AR, Saien J, Chin S, Le HA, Park E, Jurng J (2015) Modeling and optimization of a sono-assisted photocatalytic water treatment process via central composite design methodology. Process Saf Environ Prot 94(31):307–314. doi:10.1016/j.psep.2014.07.004

    Article  Google Scholar 

  • Wen G, Wang S-J, Ma J, Huang T-L, Liu Z-Q, Zhao L, Su J-F (2014) Enhanced ozonation degradation of di-n-butyl phthalate by zero-valent zinc in aqueous solution: performance and mechanism. J Hazard Mater 265:69–78. doi:10.1016/j.jhazmat.2013.11.038

    Article  Google Scholar 

  • Yahya MS, Oturan N, El Kacemi K, El Karbane M, Aravindakumar C, Oturan MA (2014) Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: kinetics and oxidation products. Chemosphere 117:447–454. doi:10.1016/j.chemosphere.2014.08.016

    Article  Google Scholar 

  • Zarei AR, Rezaeivahidian H, Soleymani AR (2015) Investigation on removal of p-nitrophenol using a hybridized photo-thermal activated persulfate process: central composite design modeling. Process Saf Environ Prot 98:109–115. doi:10.1016/j.psep.2015.07.006

    Article  Google Scholar 

  • Zhang J, Wu Y, Qin C, Liu L, Lan Y (2015) Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc. Chemospher 141(31):258–264. doi:10.1016/j.chemospher.2015.07.066

    Article  Google Scholar 

  • Zou X, Zhou T, Mao J, Wu X (2014) Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system. Chem Eng 257:36–44. doi:10.1016/j.cej.2014.07.048

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Research Department of Hamadan University of Medical Sciences. The researchers express their heartfelt gratitude to everyone involved in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halime Almasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A.R., Rezaei-Vahidian, H., Almasi, H. et al. Modeling and Optimization of Ciprofloxacin Degradation by Hybridized Potassium Persulfate / Zero Valent-Zinc/Ultrasonic Process. Environ. Process. 4, 563–572 (2017). https://doi.org/10.1007/s40710-017-0251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-017-0251-x

Keywords

Navigation