Skip to main content
Log in

Use of Optimally Pruned Extreme Learning Machine (OP-ELM) in Forecasting Dissolved Oxygen Concentration (DO) Several Hours in Advance: a Case Study from the Klamath River, Oregon, USA

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

This study presents a new method called optimally pruned extreme learning machine (OP-ELM) for forecasting dissolved oxygen concentration (DO) several hours in advance. The forecast time horizon ranges from 24-h ahead (one day) to 168-h ahead (seven days). The proposed OP-ELM model is compared to the standard multilayer perceptron neural network (MLPNN) with respect to their capabilities of forecasting DO in the Klamath River at Miller Island Boat Ramp, Oregon, USA. To demonstrate the forecasting capability of OP-ELM and MLPNN models, we used a long-term data set of hourly DO data for a ten-year period, from 1 January 2004 to 31 December 2013, collected by the United States Geological Survey (USGS Stations No: 420,853,121,505,500 [Top] and 420,853,121,505,501 [Bottom]). For developing the models, we split the data set into a training subset (from 2004 to 2010) that corresponded to 70 %, and a validation (from 2011 to 2013) that corresponded to 30 % of the total data set. We investigated the performance and accuracy of the proposed two models for three different horizons, i.e., short-term, medium-term and long-term forecasting; a total of six different models (FM1 to FM6), having the same data sets as inputs, were developed for short-term (24 h to 48 h), medium-term (72 h to 96 h) and long-term (120 h to 168 h) horizons. Input variables used in the six models were the six antecedent DO concentrations at (t-5), (t-4), (t-3), (t-2), (t-1) and (t). The performance of the OP-ELM and MLPNN models in training and validation sets were compared with the observed data. To get more accurate evaluation of the results of the two models, the following seven statistical performance indices were used: the coefficient of correlation (R), the Willmott index of agreement (d), the Nash-Sutcliffe efficiency (NSE), the root mean squared error (RMSE), the mean absolute error (MAE), the bias error (Bias), and the mean absolute percentage error (MAPE). The study reveals that OP-ELM and MLPN provided good results and they were successful in forecasting DO at a high level of accuracy. The reliability of forecasting decreased with increasing the step ahead. The measures of model performance fell within the acceptable ranges for the two stations. Regarding the fact that researches on medium and long-term forecasting are relatively limited, the present work aims to build and provide a good early warning system capable of preventing DO depletion and the associated problems of anoxia and hypoxia in river. Furthermore, the proposed forecasting models, when implemented appropriately, could be reliably used in detecting future change in DO concentration in rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ackerson JP, Demattê JAM, Morgan CLS (2015) Predicting clay content on field-moist intact tropical soils using a dried, ground VisNIR library with external parameter orthogonalization. Geoderma 259-260:196–204. doi:10.1016/j.geoderma.2015.06.002

    Article  Google Scholar 

  • Adamala S, Raghuwanshi NS, Mishra A (2015) Generalized quadratic synaptic neural networks for ET0 modeling. Environ Process 2:309–329. doi:10.1007/s40710-015-0066-6

    Article  Google Scholar 

  • Akkoyunlu A, Altun H, Cigizoglu H (2011) Depth-integrated estimation of dissolved oxygen in a lake. ASCE J Environ Eng 137(10):961–967. doi:10.1061/(ASCE)EE.1943-7870.0000376

    Article  Google Scholar 

  • Akusok A, Veganzones D, Miche Y, Björk K-M, du Jardin P, Severin E, Lendasse A (2015) MD-ELM: originally mislabeled samples detection using OP-ELM model. Neurocomputing 159:242–250. doi:10.1016/j.neucom.2015.01.055

    Article  Google Scholar 

  • Alizadeh MJ, Kavianpour MR (2015) Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Mar Pollut Bull 98:171–178. doi:10.1016/j.marpolbul.2015.06.052

    Article  Google Scholar 

  • Altunkaynak A, Ozger M, Cakmakci M (2005) Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn. Ecol Model 189:436–446. doi:10.1016/j.ecolmodel.2005.03.007

    Article  Google Scholar 

  • An Y, Zou Z, Zhao Y (2015) Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1,1) model. Journal of Environmental Sciences. (29):158–164. doi:10.1016/j.jes.2014.10.005.

  • Antanasijević D, Pocajt V, Povrenović D, Perić-Grujić A, Ristić M (2013) Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environ Sci Pollut Res 20:9006–9013. doi:10.1007/s11356-013-1876-6

    Article  Google Scholar 

  • Antanasijević D, Pocajt V, Povrenović D, Perić-Grujić A, Ristić M (2014) Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo simulation uncertainty analysis. J Hydrol 519:1895–1907. doi:10.1016/j.jhydrol.2014.10.009

    Article  Google Scholar 

  • Antonopoulos VZ, Georgiou PE, Antonopoulos ZV (2015) Dispersion coefficient prediction using empirical models and ANNs. Environ Process 2:379–394. doi:10.1007/s40710-015-0074-6

    Article  Google Scholar 

  • Areerachakul S, Sophatsathit P, Lursinsap C (2013) Integration of unsupervised and supervised neural networks to predict dissolved oxygen concentration in canals. Ecol Model 261(262):1–7. doi:10.1016/j.ecolmodel.2013.04.002

    Article  Google Scholar 

  • Ay M, Kisi O (2012) Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. ASCE J Environ Eng 138(6):654–662. doi:10.1061/(ASCE)EE.1943-7870.0000511

    Article  Google Scholar 

  • Azad S, Debnath S, Rajeevan M (2015) Analysing predictability in Indian monsoon rainfall: a data analytic approach. Environ Process 2(1):717–727. doi:10.1007/s40710-015-0108-0

    Article  Google Scholar 

  • Boskidis I, Gikas GD, Pisinaras V, Tsihrintzis VA (2010) Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece. J Environ Sci Health-Part A 45(11):1421–1440. doi:10.1080/10934529.2010.500936

    Article  Google Scholar 

  • Boskidis I, Gikas GD, Sylaios G, Tsihrintzis VA (2011) Water quantity and quality assessment of lower Nestos river, Greece. J Environ Sci Health-Part A 46:1050–1067. doi:10.1080/10934529.2011.590381

    Article  Google Scholar 

  • Bowden GJ, Maier HR, Dandy GC (2002) Optimal division of data for neural network models in water resources applications. Water Resour Res 38(2):1010. doi:10.1029/2001WR000266

    Article  Google Scholar 

  • Bowden GJ, Dandy GC, Maier HR (2005a) Input determination for neural network models in water resources applications. Part 1-background and methodology. J Hydrol 301(1–4):75–92. doi:10.1016/j.jhydrol.2004.06.021

    Article  Google Scholar 

  • Bowden GJ, Dandy GC, Maier HR (2005b) Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J Hydrol 301(1–4):93–104. doi:10.1016/j.jhydrol.2004.06.021

    Article  Google Scholar 

  • Breitburg DL, Adamack A, Rose KA, Kolesar SE, Decker MB, Purcell JE, Keister JE, Cowan JH (2003) The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 26(2):280–297. doi:10.1007/BF02695967

    Article  Google Scholar 

  • Cao J, Lin Z, Huang GB (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36:285–305. doi:10.1007/s11063-012-9236-y

    Article  Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature Geosci Model Dev 7:1247–1250. doi:10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  • Chamoglou M, Papadimitriou T, Kagalou I (2014) Key-descriptors for the functioning of a Mediterranean reservoir: the case of the new Lake Karla-Greece. Environ Process 1:127–135. doi:10.1007/s40710-014-0011-0

    Article  Google Scholar 

  • Chang CW, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil SciSoc Am J 65:480–490. doi:10.2136/sssaj2001.652480x

    Article  Google Scholar 

  • Chase C (2013) Demand-Driven Forecasting: A Structured Approach to Forecasting, 2nd Edition. Hoboken, NJ, USA: Wiley. ISBN: 978–1–118-66939-6, pp 384.

  • Cox BA (2003a) A review of dissolved oxygen modelling techniques for lowland rivers. Sci Total Environ 314(316):303–334. doi:10.1016/S0048-9697(03)00062-7

    Article  Google Scholar 

  • Cox BA (2003b) A review of currently available in-stream water quality models and their applicability for simulating dissolved oxygen in lowland rivers. Sci Total Environ 314-316:335–377. doi:10.1016/S0048-9697(03)00063-9

    Article  Google Scholar 

  • Das DB, Thirakulchaya T, Deka L, Hanspal NS (2015) Artificial neural network to determine dynamic effect in capillary pressure relationship for two-phase flow in porous media with micro-heterogeneities. Environ Process 2:1–18. doi:10.1007/s40710-014-0045-3

    Article  Google Scholar 

  • Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1):80–108. doi:10.1177/030913330102500104

    Article  Google Scholar 

  • Dawson CW, Harpham C, Wilby RL, Chen Y (2002) Evaluation of artificial neural network techniques for flow forecasting in the river Yangtze. China Hydrol Earth Syst Sci 6:619–626. doi:10.5194/hess-6-619-2002

    Article  Google Scholar 

  • Dawson CW, Abrahart RJ, See LM (2007) HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ Model Softw 22:1034–1052. doi:10.1016/j.envsoft.2006.06.008

    Article  Google Scholar 

  • Deo RC, Wen X, Qi F (2016) A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl Energy 168:568–593. doi:10.1016/j.apenergy.2016.01.130

    Article  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32:407–499. doi:10.1214/009053604000000067

    Article  Google Scholar 

  • Emamgholizadeh S, Kashi H, Marofpoor I, Zalaghi E (2014) Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. Int J Environ Sci Technol 11:645–656. doi:10.1007/s13762-013-0378-x

    Article  Google Scholar 

  • Evrendilek F, Karakaya N (2014) Regression model-based predictions of diel, diurnal and nocturnal dissolved oxygen dynamics after wavelet denoising of noisy time series. Physica A 404:8–15. doi:10.1016/j.physa.2014.02.062

    Article  Google Scholar 

  • Evrendilek F, Karakaya N (2015) Spatiotemporal modeling of saturated dissolved oxygen through regressions after wavelet denoising of remotely and proximally sensed data. Earth Sci Inf 8:247–254. doi:10.1007/s12145-014-0148-4

    Article  Google Scholar 

  • Faruk DÖ (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell 23:586–594. doi:10.1016/j.engappai.2009.09.015

    Article  Google Scholar 

  • Friedrich et al 2014 (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences, 11:1215–1259. doi:10.5194/bg-11-1215-2014 .

  • Gebremariam SY, Martin JF, DeMarchi C, Bosch NS, Confesor R, Ludsin SA (2014) A comprehensive approach to evaluating watershed models for predicting river flow regimes critical to downstream ecosystem services. Environ Model Softw 61:121–134. doi:10.1016/j.envsoft.2014.07.004

    Article  Google Scholar 

  • Gikas GD (2014) Water quality of drainage canals and assessment of nutrient loads using QUAL2Kw. Environ Process 1:369–385. doi:10.1007/s40710-014-0027-5

    Article  Google Scholar 

  • Gikas GD, Yiannakopoulou T, Tsihrintzis VA (2006) Modeling of non-point source pollution in a Mediterranean drainage basin. Environ Model Assess 11:219–233. doi:10.1007/s10666-005-9017-3

    Article  Google Scholar 

  • Grigorievskiy A, Miche Y, Ventelä AM, Séverin E, Lendasse A (2014) Long-term time series prediction using OP-ELM. Neural Netw 51:50–56. doi:10.1016/j.neunet.2013.12.002

    Article  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Heddam S (2014a) Generalized regression neural network (GRNN) based approach for modelling hourly dissolved oxygen concentration in the upper Klamath River, Oregon, USA. Environ Technol 35(13):1650–1657. doi:10.1080/09593330.2013.878396

    Article  Google Scholar 

  • Heddam S (2014b) Modelling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study. Environ Monit Assess 186:597–619. doi:10.1007/s10661-013-3402-1

    Article  Google Scholar 

  • Heddam S (2014c) Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS) based approach: case study of Klamath River at Miller Island Boat Ramp, Oregon, USA. Environ Sci Pollut Res 21:9212–9227. doi:10.1007/s11356-014-2842-7

    Article  Google Scholar 

  • Heddam S (2016a) Secchi disk depth estimation from water quality parameters: artificial neural network versus multiple linear regression models? Environ Process 3(1):525–536. doi:10.1007/s40710-016-0144-4

    Article  Google Scholar 

  • Heddam S (2016b) Multilayer perceptron neural network based approach for modelling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA. Environmental Science and Pollution Research. doi:10.1007/s11356-016-6905-9

    Google Scholar 

  • Heddam S, Bermad A, Dechemi N (2011) Applications of radial basis function and generalized regression neural networks for modelling of coagulant dosage in a drinking water treatment: a comparative study. ASCE J Environ Eng 137(12):1209–1214. doi:10.1061/(ASCE)EE.1943-7870.0000435

    Article  Google Scholar 

  • Heddam S, Bermad A, Dechemi N (2012) ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ Monit Assess 184:1953–1971. doi:10.1007/s10661-011-2091-x

    Article  Google Scholar 

  • Heddam S, Lamda H, Filali S (2016) Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study. Environ Process 3(1):153–165. doi:10.1007/s40710-016-0129-3

    Article  Google Scholar 

  • Hornik K (1991) Approximation capabilities of multilayer feedforward networks, Neural Netw, 4(2):251–257, 1991.doi:10.1016/0893-6080(91)90009-T.

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366. doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  • Huang GB (2015) What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 7:263–278. doi:10.1007/s12559-015-9333-0

    Article  Google Scholar 

  • Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):3056–3062. doi:10.1016/j.neucom.2007.02.009

    Article  Google Scholar 

  • Huang GB, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18):3460–3468. doi:10.1016/j.neucom.2007.10.008

    Article  Google Scholar 

  • Huang GB, Chen L, Siew CK (2006a) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892. doi:10.1109/TNN.2006.875977

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006b) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501. doi:10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  • Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2:107–122. doi:10.1007/s13042-011-0019-y

    Article  Google Scholar 

  • Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48. doi:10.1016/j.neunet.2014.10.001

    Article  Google Scholar 

  • Kim S, Kim H (2016) A new metric of absolute percentage error for intermittent demand forecasts. Int J Forecast 32:669–679. doi:10.1016/j.ijforecast.2015.12.003

    Article  Google Scholar 

  • Kingston GB, Maier HR, Lambert MF (2005) Calibration and validation of neural networks to ensure physically plausible hydrological modeling. J Hydrol 314:158–176. doi:10.1016/j.jhydrol.2005.03.013

    Article  Google Scholar 

  • Kisi O, Akbari N, Sanatipour M, Hashemi A, Teimourzadeh K, Shiri J (2013) Modeling of dissolved oxygen in river water using artificial intelligence techniques. Journal of Environmental Informatics 22(2):92–101. doi:10.3808/jei.201300248

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241. doi:10.1029/1998WR900018

    Article  Google Scholar 

  • Li MB, Huang GB, Saratchandran P (2005) Sundarajan N (2005) fully complex extreme learning machine. Neurocomputing 68:306–314. doi:10.1016/j.neucom.2005.03.002

    Article  Google Scholar 

  • Liang NY, Huang GB, Saratchandran P, Sundarajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks, IEEE trans. Neural Netw 17(6):1411–1423. doi:10.1109/TNN.2006.880583

    Article  Google Scholar 

  • Liu S, Tai H, Ding Q, Li D, Xu L, Wei Y (2013) A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Math Comput Model 58:458–465. doi:10.1016/j.mcm.2011.11.021

    Article  Google Scholar 

  • Liu S, Xu L, Jiang Y, Li D, Chen Y, Li Z (2014) A hybrid WA-CPSO-LSSVR model for dissolved oxygen content prediction in crab culture. Eng Appl Artif Intell 29:114–124. doi:10.1016/j.engappai.2013.09.019

    Article  Google Scholar 

  • Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022. doi:10.1029/96WR03529

    Article  Google Scholar 

  • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15(1):101–124. doi:10.1016/S1364-8152(99)00007-9

    Article  Google Scholar 

  • Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ Model Softw 25(8):891–909. doi:10.1016/j.envsoft.2014.11.028

    Article  Google Scholar 

  • Mandal S, Mahapatra SS, Adhikari S, Patel RK (2015) Modeling of arsenic (III) removal by evolutionary genetic programming and least square support vector machine models. Environ Process 2:145–172. doi:10.1007/s40710-014-0050-6

    Article  Google Scholar 

  • Mellios N, Kofinas D, Laspidou C, Papadimitriou T (2015) Mathematical modeling of trophic state and nutrient flows of Lake Karla using the PCLake model. Environ Process 2(Suppl 1):S85–S100. doi:10.1007/s40710-015-0098-y

    Article  Google Scholar 

  • Miche Y, Sorjamaa A, Lendasse A (2008) OP-ELM: theory, experiments and a toolbox. In: In: proceedings of the international conference on artificial neural networks. Lecture notes in computer science, Vol. 5163, Prague, Czech Republic, pp. 145–154. doi:10.1007/978-3-540-87536-9_16

    Google Scholar 

  • Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162. doi:10.1109/TNN.2009.2036259

    Article  Google Scholar 

  • Mohan S, Pavan Kumar K (2016) Waste load allocation using machine scheduling: model application. Environ Process 3(1):139–151. doi:10.1007/s40710-016-0122-x

    Article  Google Scholar 

  • Moreno R, Corona F, Lendasse A, Graña M, Galvão LS (2014) Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128:207–216. doi:10.1016/j.neucom.2013.03.057

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part 1- a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nemati S, Fazelifard MH, Terzi O, Ghorbani MA (2015) Estimation of dissolved oxygen using data-driven techniques in the Tai Po River, Hong Kong. Environ Earth Sci 74:4065–4073. doi:10.1007/s12665-015-4450-3

    Article  Google Scholar 

  • Nürnberg GK (2004) Quantified hypoxia and anoxia in lakes and reservoirs. Sci World J 4:42–54. doi:10.1100/tsw.2004.5

    Article  Google Scholar 

  • Pisinaras V, Petalas C, Gikas GD, Gemitzi A, Tsihrintzis VA (2010) Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT). Desalination 250:274–286. doi:10.1016/j.desal.2009.09.044

    Article  Google Scholar 

  • Pouzols FM, Lendasse A (2010a) Evolving fuzzy optimally pruned extreme learning machine: a comparative analysis. IEEE International Conference on Fuzzy Systems (FUZZ), pp.1–8. doi:10.1109/FUZZY.2010.5584327.

  • Pouzols FM, Lendasse A (2010b) Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evol Syst 1:43–58. doi:10.1007/s12530-010-9005-y

    Article  Google Scholar 

  • Ranković V, Radulović J, Radojević I, Ostojić A, Ćomić L (2010) Neural network modeling of dissolved oxygen in the Gruźa reservoir, Serbia. Ecol Model 221:1239–1244. doi:10.1016/j.ecolmodel.2009.12.023

    Article  Google Scholar 

  • Rayer S (2007) Population forecast accuracy: does the choice of summary measure of error matter? Popul Res Policy Rev 26:163–184. doi:10.1007/s11113-007-9030-0

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland PDP, Research Group, editors. Parallel distributed processing: explorations in the microstructure of cognition. Foundations, Vol. I. Cambridge, MA: MIT Press; pp. 318–362.

  • Santisukkasaem U, Olawuyi F, Oye P, Das DB (2015) Artificial neural network (ANN) for evaluating permeability decline in permeable reactive barrier (PRB). Environ Process 2:291–307. doi:10.1007/s40710-015-0076-4

    Article  Google Scholar 

  • Similä T, Tikka J (2005) Multiresponse sparse regression with application to multidimensional scaling. In: Artificial neural networks: formal models and their applications-ICANN 2005, Vol. 3697/2005, pp. 97–102. doi:10.1007/11550907_16.

  • Singh J, Knapp HV, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT.ISWS CR 2004–08. www.isws.illinois.edu .

  • Sorjamaa A, Miche Y, Weiss R, Lendasse A (2008) Long-term prediction of time series using NNE-based projection and OP-ELM. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN). Hong Kong, China, pp. 2674–2680. doi:10.1109/IJCNN.2008.4634173

    Google Scholar 

  • Sovilj D, Sorjamaa A, Yu Q, Miche Y, Séverin E (2010) OPELM and OPKNN in long-term prediction of time series using projected input data. Neurocomputing 73:1976–1986. doi:10.1016/j.neucom.2009.11.033

    Article  Google Scholar 

  • Sullivan AB, Rounds SA, Deas ML, Sogutlugil IE (2012) Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting-preliminary results from three model scenarios for the Klamath River upstream of keno dam, Oregon: U.S. Geological Survey Open-File Report 2012–1101, 30 p. http://pubs.usgs.gov/of/2012/1101/.

  • Sullivan AB, Rounds SA, Asbill-Case JR, Deas ML (2013a) Macrophyte and pH buffering updates to the Klamath River water-quality model upstream of Keno dam, Oregon: U.S. Geological Survey Scientific Investigations Report 2013–5016, 52 p. http://pubs.usgs.gov/sir/2013/5016/

  • Sullivan AB, Sogutlugil IE, Rounds SA, Deas ML (2013b) Modeling the water-quality effects of changes to the Klamath River upstream of Keno dam, Oregon: U.S. Geological Survey Scientific Investigations Report 2013–5135, 60 p. http://pubs.usgs.gov/sir/2013/5135 .

  • Tayman J. Swanson DA (1999) On the validity of MAPE as a measure of population forecast accuracy. Population Research and Policy Review18(4):299–322. doi:10.1023/A:1006166418051.

  • U.S. Geological Survey (2008) National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Chaps. A1-A9 variously dated. Chapter A6, 6–2 dissolved oxygen, p 48. http://water.usgs.gov/owq/FieldManual/Chapter6/6.2_contents.html .

  • Wang Y, Zheng T, Zhao Y, Jiang J, Wan YG, Guo L, Wang P (2013) Monthly water quality forecasting and uncertainty assessment via bootstrapped wavelet neural networks under missing data for Harbin, China. Environ Sci Pollut Res 20:8909–8923. doi:10.1007/s11356-013-1874-8

    Article  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull of Am Meteorol Soc 63:1309–1313. doi:10.1175/1520-0477(1982)063

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79–82. doi:10.3354/cr030079

    Article  Google Scholar 

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995–9005. doi:10.1029/JC090iC05p08995

    Article  Google Scholar 

  • Yang Y, Wang Y, Yuan X (2012) Bidirectional extreme learning machine for regression problem and its learning effectiveness. IEEE Transactions on Neural Networks and Learning Systems 23:1498–1505. doi:10.1109/TNNLS.2012.2202289

    Article  Google Scholar 

  • Zeng Z, Jiang YL, Liu Y, Liu W (2013) Efficient Data Representation Combining with ELM and GNMF, pp.13–23. In Sun F, Toh KA, Romay MG, Mao K (eds.), Extreme Learning Machines 2013: Algorithms and applications, Adaptation, Learning, and Optimization 16.doi:10.1007/978-3-319-04741-6_2.

Download references

Acknowledgments

The authors would like to thank the staff of the United States Geological Survey (USGS) for providing the data that made this research possible. We would like to thank the staff of the Research Group Applications of Machine Learning (AML), Department of Computer Science at the Aalto University School of Science, Espoo, Finland, for providing the OP-ELM toolbox. Once again, we would like to thank the anonymous reviewers and the editor of Environmental Processes for their invaluable comments and suggestions on the contents of the manuscript which significantly improved the quality of the paper. Note that it has not gone unnoticed nor unappreciated. This makes me want to submit more papers to ENPR journal in the future.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Heddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heddam, S. Use of Optimally Pruned Extreme Learning Machine (OP-ELM) in Forecasting Dissolved Oxygen Concentration (DO) Several Hours in Advance: a Case Study from the Klamath River, Oregon, USA. Environ. Process. 3, 909–937 (2016). https://doi.org/10.1007/s40710-016-0172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-016-0172-0

Keywords

Navigation