Skip to main content
Log in

Secchi Disk Depth Estimation from Water Quality Parameters: Artificial Neural Network versus Multiple Linear Regression Models?

  • Short Communication
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

In the present investigation, a new model based on feedforward neural networks (FFNN) is developed and compared to the standard multiple linear regression (MLR) in modeling Secchi disk depth (SD) in the Saginaw Bay, Lake Huron, Michigan, USA. The model uses four water quality parameters as input, namely total suspended solids (TSS), water temperature (TE), dissolved oxygen (DO) and chlorophyll (Chl). In an attempt to identify the important parameters that influence the SD, four water quality parameters were selected for further investigation. The analysis identified TSS and Chl to have the most important influence on the SD; and the inclusion of DO and TE did not lead to an overall improvement in the performance of the models. The FFNN and MLR were evaluated using well-known statistical indices, i.e., the correlation coefficient (CC), the root mean squared error (RMSE) and the mean absolute error (MAE). The results obtained from the present investigation are very promising, as we demonstrated that the Secchi disk depth can be predicted very well with correlation coefficient equal to 0.918 in the testing phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aarup T (2002) Transparency of the North Sea and Baltic Sea a Secchi Depth data mining study. Oceanologia 44(3):323–337

    Google Scholar 

  • Adamala S, Raghuwanshi NS, Mishra A (2015) Generalized quadratic synaptic neural networks for ET0 modeling. Environ Process 2(2):309–329. doi:10.1007/s40710-015-0066-6

    Article  Google Scholar 

  • Alexakis D, Tsihrintzis VA, Tsakiris G, Gikas GD (2016) Suitability of water quality indices for application in lakes in the Mediterranean. Water Resour Manag. doi:10.1007/s11269-016-1240-y

    Google Scholar 

  • Antonopoulos VZ, Georgiou PE, Antonopoulos ZV (2015) Dispersion coefficient prediction using empirical models and ANNs. Environ Process 2(2):379–394. doi:10.1007/s40710-015-0074-6

    Article  Google Scholar 

  • Azad S, Debnath S, Rajeevan M (2015) Analysing predictability in Indian monsoon rainfall: a data analytic approach. Environ Process 2(4):717–727. doi:10.1007/s40710-015-0108-0

    Article  Google Scholar 

  • Brezonik PL (1978) Effect of organic color and turbidity of secchi disk transparency. J Fish Res Board Can 35(11):1410–1416. doi:10.1139/f78-222

    Article  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369. doi:10.4319/lo.1977.22.2.0361

    Article  Google Scholar 

  • Das DB, Thirakulchaya T, Deka L, Hanspal NS (2015) Artificial neural network to determine dynamic effect in capillary pressure relationship for two-phase flow in porous media with micro-heterogeneities. Environ Process 2(1):1–18. doi:10.1007/s40710-014-0045-3

    Article  Google Scholar 

  • Davies-Colley RJ (1988) Measuring water clarity with a black disc. Limnol Oceanogr 33:616–623. doi:10.4319/lo.1988.33.4.0616

    Article  Google Scholar 

  • Davies-Colley RJ, Smith DG (2001) Turbidity suspended sediment, and water clarity: a review. JAWRA J Am Water Resour Assoc 35-5:1085–1101. doi:10.1111/j.1752-1688.2001.tb03624.x

    Article  Google Scholar 

  • Fahnenstiel GL, Lang GA, Nalepa TF, Johengen TH (1995a) Effects of zebra mussel (Dreissena polymorpha) colonization on water quality parameters in Saginaw Bay, Lake Huron. J Great Lakes Res 21:435–448. doi:10.1016/S0380-1330(95)71057-7

    Article  Google Scholar 

  • Fahnenstiel GL, Bridgeman TB, Lang GA, McCormick MJ, Nalepa TF (1995b) Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. J Great Lakes Res 21:465–475. doi:10.1016/S0380-1330(95)71059-0

    Google Scholar 

  • Gikas GD, Yiannakopoulou T, Tsihrintzis VA (2006) Water quality trends in a coastal lagoon impacted by non-point source pollution after implementation of protective measures. Hydrobiologia 563:385–406. doi:10.1007/s10750-006-0034-2

    Article  Google Scholar 

  • Gikas GD, Tsihrintzis VA, Akratos CS, Haralambidis G (2009) Water quality trends in Polyphytos reservoir, Aliakmon River, Greece. Environ Monit Assess 149:163–181. doi:10.1007/s10661-008-0191-z

    Article  Google Scholar 

  • Heddam S, Bermad A, Dechemi N (2011) Applications of radial basis function and generalized regression neural networks for modelling of coagulant dosage in a drinking water treatment: a comparative study. ASCE J Environ Eng 137(12):1209–1214. doi:10.1061/(ASCE)EE.1943-7870.0000435

    Article  Google Scholar 

  • Heddam S, Bermad A, Dechemi N (2012) ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ Monit Assess 184:1953–1971. doi:10.1007/s10661-011-2091-x

    Article  Google Scholar 

  • Heddam S, Lamda H, Filali S (2016) Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: A comparative study. Environ Process 3(1):153–165. doi:10.1007/s40710-016-0129-3

    Article  Google Scholar 

  • Hellweger FL, Schlosser P, Lall U, Weissel JK (2004) Use of satellite imagery for water quality studies in New York Harbor. Estuar Coast Shelf Sci 61:437–448. doi:10.1016/j.ecss.2004.06.019

    Article  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366. doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1990) Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw 3:551–560. doi:10.1016/0893-6080(90)90005-6

    Article  Google Scholar 

  • Ibáñez Civera J, Garcia Breijo E, Laguarda Miró N, Gil Sánchez L, Garrigues Baixauli J, Romero Gil I, Masot Peris R, Alcañiz Fillol M (2011) Artificial neural network onto eight bit microcontroller for secchi depth calculation. Sensors Actuators B 156:132–139. doi:10.1016/j.snb.2011.04.001

    Article  Google Scholar 

  • Johengen TH, Nalepa TF, Fahnentiel GL, Goudy G (1995) Nutrient changes in Saginaw Bay, Lake Huron after the establishment of the zebra mussel (Dreissena polymorpha). J Great Lakes Res 21:449–464. doi:10.1016/S0380-1330(95)71058-9

    Article  Google Scholar 

  • Johengen TH, Nalepa TF, Lang GA, Fanslow DL, Vanderploeg HA, Agy MA (2000) Physical and Chemical Variables of Saginaw Bay, Lake Huron in 1994-1996. NOAA Technical Memorandum TM-115, Chlorophyll, nutrients, alkalinity, carbon, and total suspended solids data collected in Saginaw Bay, Lake Huron from 1994 to 1996. Builds upon TM-091 http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-115/.

  • Kloiber SM, Brezonik PL, Olmanson LG, Bauer ME (2002) A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens Environ 82:38–47. doi:10.1016/S0034-4257(02)00022-6

    Article  Google Scholar 

  • Larson GL, Hoffman RL, Hargreaves BR, Collier RW (2007) Predicting Secchi disk depth from average beam attenuation in a deep, Ultra-clear lake. Hydrobiologia 574:141–148. doi:10.1007/s10750-006-0349-z

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241. doi:10.1029/1998WR900018

    Article  Google Scholar 

  • Li R, Li J (2004) Satellite remote sensing technology for lake water clarity monitoring: an overview. Environmental Informatics Archives 2:893–901

    Google Scholar 

  • Li X, Zecchin AC, Maier HR (2015) Improving partial mutual information-based input variable selection by consideration of boundary issues associated with bandwidth estimation. Environ Model Softw 71:78–96. doi:10.1016/j.envsoft.2015.05.013

    Article  Google Scholar 

  • Luhtala H, Tolvanen H (2013) Optimizing the use of Secchi depth as a proxy for euphotic depth in coastal waters: An empirical study from the Baltic Sea. ISPRS Int J Geo-Inf 2:1153–1168. doi:10.3390/ijgi2041153

    Article  Google Scholar 

  • Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ Model Softw 25(8):891–909. doi:10.1016/j.envsoft.2010.02.003

    Article  Google Scholar 

  • Mandal S, Mahapatra SS, Adhikari S, Patel RK (2015) Modeling of arsenic (III) removal by evolutionary genetic programming and Least Square support vector machine models. Environ Process 2(1):145–172. doi:10.1007/s40710-014-0050-6

    Article  Google Scholar 

  • MATLAB (2010) the MathWorks Inc., Natick, MA. http://www.mathworks.com.

  • May R, Dandy G, Maier H (2011) Review of input variable selection methods for artificial neural networks. In: InTech (ed) Artificial neural networks - methodological advances and biomedical applications, Rijeka, pp. 19–44. doi:10.5772/16004

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5:115–133. doi:10.1007/BF02478259

    Article  Google Scholar 

  • Michaud JP (1991) A Citizens’ guide to understanding and monitoring lakes and-streams. Washington State Department of Ecology. www.ecy.wa.gov/programs/wq.

  • Myre E, Shaw R (2006) The turbidity tube: simple and accurate measurement of turbidity in the field. Michigan Technology University, Houghton

    Google Scholar 

  • Olmanson LG, Brezonik PL, Bauer ME (2015) Remote sensing for regional lake water quality assessment: capabilities and limitations of current and upcoming satellite systems. In T. Younos, T.E. Parece (eds.) Advances in watershed science and assessment. The Handbook of Environmental Chemistry 33. doi:10.1007/978-3-319-14212-8_5

  • Santisukkasaem U, Olawuyi F, Oye P, Das DB (2015) Artificial neural network (ANN) for evaluating permeability decline in permeable reactive barrier (PRB). Environ Process 2(2):291–307. doi:10.1007/s40710-015-0076-4

    Article  Google Scholar 

  • USGS (2014) Estimation of Secchi Depth from turbidity Data in the Willamette River at Portland, OR (14211720). http://or.water.usgs.gov/will_morrison/secchi_depth_model.html.

  • Wu G, Leeuw JD, Skidmore AK, Prins HT, Liu Y (2008) Comparison of MODIS and Landsat TM5 images for mapping tempo-spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve, China. Int J Remote Sens 29(8):2183–2198. doi:10.1080/01431160701422254

    Article  Google Scholar 

  • Wu G, Leeuw JD, Liu Y (2009) Understanding seasonal water clarity dynamics of Lake Dahuchi from in situ and remote sensing data. Water Resour Manag 23:1849–1861. doi:10.1007/s11269-008-9356-3

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professors: Gregory Lang, Thomas H. Johengen, and Henry A. Vanderploeg from the Great Lakes Environmental Research Laboratory, NOAA, Michigan, USA, for giving permission for using the data that made this study possible. Once again, we would like to thank anonymous reviewers and the editor of Environmental Processes for their invaluable comments and suggestions on the contents of the manuscript which significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Heddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heddam, S. Secchi Disk Depth Estimation from Water Quality Parameters: Artificial Neural Network versus Multiple Linear Regression Models?. Environ. Process. 3, 525–536 (2016). https://doi.org/10.1007/s40710-016-0144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-016-0144-4

Keywords

Navigation