Abstract
The factor structure of the 16 core and supplementary Cattell-Horn-Carroll (CHC) model subtests for the Kaufman Assessment Battery for Children-Second Edition (KABC-II; Kaufman and Kaufman, 2004a) standardization sample samples aged 7–18 (N = 2025) was examined using exploratory factor analytic techniques (EFA) not included in the KABC-II manual (Kaufman and Kaufman, 2004b). The present results failed to replicate the five-factor CHC-based structure posited by the test publisher at school age. Factor extraction for the core battery suggested four factors, whereas five factors were supported for the total battery configuration. When these structures were transformed with the Schmid and Leiman (Psychometrika, 22, 53–61, 1957) orthgonalization procedure, the second-order general factor accounted for larger portions of total and common variance when compared to the reliable variance accounted for by the resulting four and five first-order factors. Users are encouraged to interpret the KABC-II primarily at the level of the Fluid-Crystallized Index (FCI), with additional consideration of the factor-based scores employed with more caution. Implications for clinical interpretation are discussed.
Similar content being viewed by others
Notes
At ages 4–6, it is suggested that the KABC-II measures four CHC-based factors. However, at these ages, Fluid Reasoning and Visual Processing measures combine to form a complexly determined factor which the publisher curiously chose to label Visual Processing.
To be fair, some of the dimensional complexity issues for the KABC-II are noted in the XBA system as Pattern Reasoning is included as an indicator for both Fluid Reasoning (Gf) and Visual Processing (Gv). Nevertheless, practitioners using the XBA system must arbitrarily assign the test to one dimension at the expense of the other which the present results suggest may obscure important sources of influence on that particular task.
References
American Educational Research Association, American Psychological Association, & National Council on Measurement on Education. (2014). Standards for educational and psychological testing. Washington: American Educational Research Association.
Bangirana, P., Seggane, M., Allebeck, P., Giordani, B., Chandy, C. J., Opoka, O. R., Byarugaba, J., Ehnvall, A., & Boivin, M. J. (2009). A preliminary examination of the construct validity of the KABC-II in Ugandan children with a history of cerebral malaria. African Health Sciences, 9, 186–192 Retrieved from http://www.ajol.info/index.php/ahs/article/view/49010/35360.
Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Mathematical and Statistical Psychology, 3, 71–85. doi:https://doi.org/10.1111/j.2044-8317.1950.tb00285.x.
Braden, J. P., & Ouzts, S. M. (2005). Review of Kaufman Assessment Battery for Children, second edition. In R. A. Spies & B. S. Plake (Eds.), The sixteenth mental measurements yearbook (pp. 517–520). Lincoln: University of Nebraska.
Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: Guilford Press.
Brunner, M., Nagy, G., & Wilhelm, O. (2012). A tutorial on hierarchically structured constructs. Journal of Personality, 80, 796–846. doi:https://doi.org/10.1111/j.1467-6494.2011.00749.x.
Canivez, G. L. (2008). Orthogonal higher order factor structure of the Stanford-Binet Intelligence Scales-Fifth Edition for children and adolescents. School Psychology Quarterly, 23, 533–541. doi:https://doi.org/10.1037/a0012884.
Canivez, G. L. (2013). Psychometric versus actuarial interpretation of intelligence and related aptitude batteries. In D. H. Saklofske, C. R. Reynolds, & V. L. Schwean (Eds.), The Oxford handbook of child psychological assessment (pp. 84–112). New York: Oxford University Press.
Canivez, G. L. (2014). Construct validity of the WISC-IV with a referred sample: direct versus indirect hierarchical structures. School Psychology Quarterly, 29, 38–51. doi:https://doi.org/10.1037/spq0000032.
Canivez, G. L., & Kush, J. C. (2013). WISC-IV and WAIS-IV structural validity: alternate methods, alternate results. Commentary on Weiss et al. (2013a) and Weiss et al. (2013b). Journal of Psychoeducational Assessment, 31, 157–169. doi:https://doi.org/10.1177/0734282913478036.
Canivez, G. L., & McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475–1488. doi:https://doi.org/10.1037/pas0000279.
Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV). Exploratory and higher order factor analyses. Psychological Assessment, 22, 827–836. doi:https://doi.org/10.1037/a0020429.
Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2016). Factor structure of the Wechsler Intelligence Scale for Children-Fifth Edition: exploratory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 28, 975–986. doi:https://doi.org/10.1037/pas0000238.
Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2017). Structural validity of the Wechsler Intelligence Scale for Children-Fifth Edition: confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 29, 458–472. doi:https://doi.org/10.1037/pas0000358.
Carroll, J. B. (1993). Human cognitive abilities: a survey of factor-analytic studies. New York: Cambridge University Press.
Carroll, J. B. (1995). On methodology in the study of cognitive abilities. Multivariate Behavioral Research, 30, 429–452. doi:https://doi.org/10.1207/s15327906mbr3003_6.
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276. doi:https://doi.org/10.1207/s15327906mbr0102_10.
Child, D. (2006). The essentials of factor analysis (3rd ed.). New York: Continuum Publishing.
DiStefano, C., & Dombrowski, S. C. (2006). Investigating the theoretical structure of the Stanford–Binet–Fifth Edition. Journal of Psychoeducational Assessment, 24, 123–136. doi:https://doi.org/10.1177/0734282905285244.
Dombrowski, S. C., McGill, R. J., & Canivez, G. L. (2017). Exploratory and hierarchical factor analysis of the WJ-IV Cognitive at school age. Psychological Assessment, 29, 394–407. doi:https://doi.org/10.1037/pas0000350.
Dombrowski, S. C. (2013). Investigating the structure of the WJ-III Cognitive at school age. School Psychology Quarterly, 28, 154–169. doi:https://doi.org/10.1037/spq0000010.
Dombrowski, S. C., & Watkins, M. W. (2013). Exploratory and higher order factor analysis of the WJ–III full test battery: a school aged analysis. Psychological Assessment, 25, 442–455. doi:https://doi.org/10.1037/a0031335.
Dombrowski, S. C., Canivez, G. L., Watkins, M. W., & Beaujean, A. (2015). Exploratory bifactor analysis of the Wechsler Intelligence Scale for Children-Fifth Edition with the 16 primary and secondary subtests. Intelligence, 53, 194–201. doi:https://doi.org/10.1016/j.intell.2015.10.009.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299. doi:https://doi.org/10.1037/1082-989X.4.3.272.
Flanagan, D. P., Alfonso, V. C., Ortiz, S. O., & Dynda, A. M. (2013). Cognitive assessment: progress in psychometric theories of intelligence, the structure of cognitive ability tests, and interpretive approaches to cognitive test performance. In D. H. Saklofske, C. R. Reynolds, & V. L. Schwean (Eds.), The Oxford handbook of child psychological assessment (pp. 239–285). New York: Oxford University Press.
Frazier, T. W., & Youngstrom, E. A. (2007). Historical increase in the number of factors measured by commercial tests of cognitive ability: are we overfactoring? Intelligence, 35, 169–182. doi:https://doi.org/10.1016/j.intell.2006.07.002.
Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV. Multivariate Behavioral Research, 48, 639–662. doi:https://doi.org/10.1080/00273171.2013.804398.
Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale: Erlbaum.
Guion, R. M. (1974). Open a new window: validities and values in psychological measurement. American Psychologist, 29, 287–296. doi:https://doi.org/10.1037/h0037624.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychomerika, 30, 179–185. doi:https://doi.org/10.1007/BF02289447.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36. doi:https://doi.org/10.1007/BF02291575.
Kaufman, A. S. (1994). Intelligent testing with the WISC-III. New York: Wiley.
Kaufman, A. S., & Kaufman, N. L. (2004a). Kaufman Assessment Battery for Children-Second Edition. Circle Pines: American Guidance Service.
Kaufman, A. S., & Kaufman, N. L. (2004b). Kaufman Assessment Battery for Children-Second Edition manual. Circle Pines: American Guidance Service.
Keith, T. Z., Caemmerer, J. M., & Reynolds, M. R. (2016). Comparison of methods for factor extraction for cognitive test-like data: which overfactor, which underfactor? Intelligence, 54, 37–54. doi:https://doi.org/10.1016/j.intell.2015.11.003.
Kranzler, J. H., Floyd, R. G., Benson, N., Zaboski, B., & Thibodaux, L. (2016). Classification agreement analysis of cross-battery assessment in the identification of specific learning disorders in children and youth. International Journal of School & Educational Psychology, 4, 124–136. doi:https://doi.org/10.1080/21683603.2016.1155515.
Luria, A. R. (1966). Human brain and psychological processes. New York: Harper Row.
MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51, 201–226. doi:https://doi.org/10.1146/annurev.psych.51.1.201.
MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: the problem of capitalizing on chance. Psychological Bulletin, 111, 490–504. doi:https://doi.org/10.1037//0033-2909.111.3.490.
MacCoun, R. J., & Perlmutter, S. (2017). Blind analysis as a correction for confirmatory bias in physics and psychology. In S. O. Lilienfeld & I. D. Waldman (Eds.), Psychological science under scrutiny: recent challenges and proposes solutions (pp. 297–322). New York: Wiley.
Mansolf, M., & Reise, S. P. (2016). Exploratory bifactor analysis: the Schmid-Leiman orthogonalization and Jennrich-Bentler analytic rotations. Multivariate Behavioral Research, 51, 698–717. doi:https://doi.org/10.1080/00273171.2016.1215898.
Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: an integration of the best features of exploratory and confirmatory factor analysis. Annual Reviews of Clinical Psychology, 10, 85–110. doi:https://doi.org/10.1146/annurev-clinpsy-032813-153700.
McGill, R. J. (2015). Interpretation of KABC-II scores: an evaluation of the incremental validity of CHC factor scores in predicting achievement. Psychological Assessment, 27, 1417–1426. doi:https://doi.org/10.1037/pas0000127.
McGill, R. J. (2016). Investigating the factor structure of the Comprehensive Test of Nonverbal Intelligence-Second Edition (CTONI-2) using exploratory factor analysis. Journal of Psychoeducational Assessment, 34, 339–350. doi:https://doi.org/10.1177/0734282915610717.
McGill, R. J., & Canivez, G. L. (2016). Orthogonal higher order structure of the WISC-IV Spanish using hierarchical exploratory factor analytic procedures. Journal of Psychoeducational Assessment, 36, 600–606. doi:https://doi.org/10.1177/0734282915624293.
McGill, R. J., & Spurgin, A. R. (2016). Assessing the incremental value of KABC-II Luria model scores in predicting achievement: what do they tell us beyond the MPI? Psychology in the Schools, 53, 677–689. doi:https://doi.org/10.1002/pits.21940.
McGill, R. J., & Spurgin, A. R. (2017). Exploratory higher order analysis of the Luria interpretive model on the Kaufman Assessment Battery for Children-Second Edition (KABC-II) school-age battery. Assessment, 24, 540–552. doi:https://doi.org/10.1177/1073191115614081.
Morgan, K. E., Rothlisberg, B. A., McIntosh, D. E., & Hunt, M. S. (2009). Confirmatory factor analysis of the KABC-II in preschool children. Psychology in the Schools, 46, 515–525. doi:https://doi.org/10.1002/pits.20394.
Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift’s electric factor analysis machine. Understanding Statistics, 2, 13–43. doi:https://doi.org/10.1207/S15328031US0201_02.
R Developmental Core Team. (2017). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667–696. doi:https://doi.org/10.1080/00273171.2012.715555.
Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129–140. doi:https://doi.org/10.1080/00223891.2012.725437.
Revelle, W. (2016). Psych: procedures for psychological, psychometric, and personality research (version 1.6.9) [computer software]. Evanston: Northwestern University.
Reynolds, M. R., Keith, T. Z., Fine, J. G., Fisher, M. E., & Low, J. (2007). Confirmatory factor structure of the Kaufman Assessment Battery for Children-Second Edition: consistency with Cattell-Horn-Carroll theory. School Psychology Quarterly, 22, 511–539. doi:https://doi.org/10.1037/1045-3830.22.4.511.
Reynolds, M. R., Keith, T. Z., & Beretvas, S. N. (2010). Use of factor mixture modeling to capture Spearman’s law of diminishing returns. Intelligence, 38, 231–241. doi:https://doi.org/10.1016/j.intell.2010.01.002.
Reynolds, M. R., Keith, T. Z., Flanagan, D. P., & Alfonso, V. C. (2013). A cross-battery, reference variable, confirmatory factor analytic investigation of the CHC taxonomy. Journal of School Psychology, 51, 535–555. doi:https://doi.org/10.1016/j.jsp.2013.02.003.
Robles, J. (1996). Confirmation bias in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 3, 73–83. doi:https://doi.org/10.1080/10705519609540031.
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98, 223–237. doi:https://doi.org/10.1080/00223891.2015.1089249.
Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45, 73–103. doi:https://doi.org/10.1080/00273170903504810.
Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53–61. doi:https://doi.org/10.1007/BF02289209.
Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: theories, tests, and issues (3rd ed., pp. 99–144). New York: Guilford Press.
Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461–464. doi:https://doi.org/10.1214/aos/1176344136.
Singer, J. K., Lichtenberger, E. O., Kaufman, J. C., Kaufman, A. S., & Kaufman, N. L. (2012). The Kaufman Assessment Battery for Children-Second Edition and the Kaufman Test of Educational Achievement-Second Edition. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: theories, tests, and issues (3rd ed., pp. 269–296). New York: Guilford Press.
Thompson, B. (2004). Exploratory and confirmatory factor analysis: understanding concepts and applications. Washington: American Psychological Association.
Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 31, 321–327. doi:https://doi.org/10.1007/BF02293557.
Watkins, M. W. (2000). Cognitive profile analysis: a shared professional myth. School Psychology Quarterly, 15, 465–479. doi:https://doi.org/10.1037/h0088802.
Watkins, M. W. (2004). MacOrtho [computer software]. State College: Ed & Psych Associates.
Watkins, M. W. (2013). Omega [computer software]. Phoenix: Ed & Psych Associates.
Watkins, M. W., & Beaujean, A. A. (2014). Bifactor structure of the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition. School Psychology Quarterly, 29, 52–63. doi:https://doi.org/10.1037/spq0000038.
Wood, J. M., Tatryn, D. J., & Gorsuch, R. L. (1996). Effects of under- and overextraction on principal axis factor analysis with varimax rotation. Psychological Methods, 1, 354–365. doi:https://doi.org/10.1037/1082-989X.1.4.354.
Funding
This article was not funded.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Ryan J. McGill declares that he has no conflict of interest. Stefan C. Dombrowski declares that he has no conflict of interest.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Standardization data from the Kaufman Assessment Battery for Children, Second Edition (KABC-II). Copyright © 2004 NCS Pearson, Inc. Used with permission. All rights reserved.
Electronic Supplementary Material
ESM 1
(DOCX 4318 kb).
Rights and permissions
About this article
Cite this article
McGill, R.J., Dombrowski, S.C. Factor Structure of the CHC Model for the KABC-II: Exploratory Factor Analyses with the 16 Core and Supplementary Subtests. Contemp School Psychol 22, 279–293 (2018). https://doi.org/10.1007/s40688-017-0152-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40688-017-0152-z


