Skip to main content

Explicit transformations for generalized Lambert series associated with the divisor function \(\sigma _{a}^{(N)}(n)\) and their applications

Abstract

Let \(\sigma _a^{(N)}(n)=\sum _{d^{N}|n}d^a\). An explicit transformation is obtained for the generalized Lambert series \(\sum _{n=1}^{\infty }\sigma _{a}^{(N)}(n)e^{-ny}\) for \(\text {Re}(a)>-1\) using the recently established Voronoï summation formula for \(\sigma _a^{(N)}(n)\) and is extended to a wider region by analytic continuation. For \(N=1\), this Lambert series plays an important role in string theory scattering amplitudes as can be seen in the recent work of Dorigoni and Kleinschmidt. These transformations exhibit several identities—a new generalization of Ramanujan’s formula for \(\zeta (2m+1)\), an identity associated with extended higher Herglotz functions, generalized Dedekind eta transformation, Wigert’s transformation, etc., all of which are derived in this paper, thus leading to their uniform proofs. A special case of one of these explicit transformations naturally leads us to consider generalized power partitions with “\(n^{2N-1}\) copies of \(n^{N}\).” Asymptotic expansion of their generating function as \(q\rightarrow 1^{-}\) is also derived which generalizes Wright’s result on the plane partition generating function. In order to obtain these transformations, several new intermediate results are required, for example, a new reduction formula for Meijer G-function and an almost closed-form evaluation of \(\left. \frac{\partial }{\partial \beta }E_{2N, \beta }(z^{2N})\right| _{\beta =1}\), where \(E_{\alpha , \beta }(z)\) is the two-variable Mittag–Leffler function.

This is a preview of subscription content, access via your institution.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Ramanujan gave equivalent definition of the generalized eta function for \(x>0\), but it can be easily extended to Re\((x)>0\).

  2. We emphasize here that the notation \(H_a^{(N)}(x)\) does not mean Nth derivative of some function \(H_a(x)\). This notation is used so as to be consistent with that used by Wigert [44] and Koshliakov [29] for the associated arithmetic as well as special functions. We retain it throughout the paper for other functions as well.

  3. Whenever the number of terms in the sequence \(\langle \cdot \rangle \) is M, \(M\ne N\), we explicitly write \(\langle \cdot \rangle |_{i=1}^{M}\).

  4. The second set of conditions, that is, \(a_j-a_t\notin {\mathbb {Z}}\), can be deleted provided we understand that if it does not hold, then a passage to the limit is required. See, for instance, [32, p. 178].

References

  1. Andrews, G.E., The Theory of Partitions, Addison-Wesley Pub. Co., NY, 300 pp.: Reissued, p. 1998. Cambridge University Press, New York (1976)

  2. Apelblat, A.: Differentiation of the Mittag-Leffler functions with respect to parameters in the Laplace transform approach. Mathematics 8, 657 (2020)

    Article  Google Scholar 

  3. Apostol, T.: Introduction to Analytic Number Theory. Springer Science+Business Media, New York (1976)

    Book  MATH  Google Scholar 

  4. Banerjee, S., Dixit, A., Gupta, S.: Lambert Series of Logarithm, the Derivative of Deninger’s Function \(R(z)\) and a Mean Value Theorem for \(\zeta \left(\frac{1}{2}-it\right)\zeta ^{\prime }\left(\frac{1}{2}+it\right)\). submitted for publication

  5. Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer-Verlag, New York (1989)

    Book  MATH  Google Scholar 

  6. Berndt, B.C.: Ramanujan’s Notebooks. Part V. Springer-Verlag, New York (1998)

    Book  MATH  Google Scholar 

  7. Andrews, George E., Berndt, Bruce C.: Ramanujan’s Lost Notebook Part II, p. 418. Springer, New York (2009)

    MATH  Google Scholar 

  8. Berndt, B.C., Dixit, A., Roy, A., Zaharescu, A.: New pathways and connections in number theory and analysis motivated by two incorrect claims of Ramanujan. Adv. Math. 304, 809–929 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berndt, B.C., Straub, A.: Ramanujan’s formula for \(\zeta (2n+1)\). In: Montgomery, H., Nikeghbali, A., Rassias, M. (eds.) Exploring the Riemann Zeta Function, pp. 13–34. Springer, Berlin (2017)

    Chapter  MATH  Google Scholar 

  10. Bridges, W., Brindle, B., Bringmann, K., Franke, J.: Asymptotic expansions for partitions generated by infinite products, submitted for publication, arXiv:2303:11864v1, March 21, (2023)

  11. Chaundy, T.W.: The unrestricted plane partition. Q. J. Math. Ser. 3, 76–80 (1932)

    Article  MATH  Google Scholar 

  12. Cohen, E.: An extension of Ramanujan’s sum. Duke Math. J. 16, 85–90 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crum, M.M.: On some Dirichlet series. J. Lond. Math. Soc. 15, 10–15 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davenport, H.: Multiplicative Number Theory, 3rd edn. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  15. Dixit, A., Gupta, R., Kumar, R.: Extended Higher Herglotz Functions I. Functional Equations. Adv. Appl. Math. To appear

  16. Dixit, A., Gupta, R., Kumar, R., Maji, B.: Generalized Lambert series, Raabe’s cosine transform and a two-parameter generalization of Ramanujan’s formula for \(\zeta (2m + 1)\). Nagoya Math. J. 239, 232–293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dixit, A., Kesarwani, A., Kumar, R.: Explicit transformations of certain Lambert series. Res. Math. Sci. 9, 34 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dixit, A., Kumar, R.: Applications of the Lipschitz summation formula and a generalization of Raabe’s cosine transform, submitted for publication

  19. Dixit, A., Maji, B.: Generalized Lambert series and arithmetic nature of odd zeta values. Proc. R. Soc. Edinb. Sect. A Math. 150(2), 741–769 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dixit, A., Maji, B., Vatwani, A.: Voronoï summation formula for the generalized divisor function\(\sigma _z^{(k)}(n)\), submitted for publication

  21. Dixon, A.L., Ferrar, W.L.: Lattice-point summation formulae. Q. J. Math. 2, 31–54 (1931)

    Article  MATH  Google Scholar 

  22. Dorigoni, D., Kleinschmidt, A.: Resurgent expansion of Lambert series and iterated Eisenstein integrals. Commun. Number Theory Phys. 15(1), 1–57 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics, p. 443. Springer-Verlag, Berlin (2014)

    Book  MATH  Google Scholar 

  24. Guinand, A.P.: Some rapidly convergent series for the Riemann \(\Xi \)-function. Q. J. Math. (Oxford) 6, 156–160 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gupta, A., Maji, B.: On Ramanujan’s formula for \(\zeta (1/2)\) and \(\zeta (2m+1)\). J. Math. Anal. Appl. 507, 125738 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hardy, G.H., Ramanujan, S.: Asymptotic formulæ in combinatory analysis. Proc. London Math. Soc. 17, 75–115. Reprinted in Collected Papers of Srinivasa Ramanujan, Chelsea Publishing Company, New York 1962, 276–309 (1918)

  27. Kanemitsu, S., Tanigawa, Y., Yoshimoto, M.: On the values of the Riemann zeta-function at rational arguments. Hardy-Ramanujan J. 24, 11–19 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Kanemitsu, S., Tanigawa, Y., Yoshimoto, M.: On multiple Hurwitz zeta-function values at rational arguments. Acta Arith. 107(1), 45–67 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Koshliakov, N.S.: Sur une intégrale définie et son application \(\grave{a}\) la théorie des formules sommatoires. J. Soc. Phys. Math. Leningr. 2(2), 123–130 (1929)

    Google Scholar 

  30. Koshliakov, N.S.: Note on certain integrals involving Bessel functions. Bull. Acad. Sci. URSS Ser. Math. 2(4), 417–420 (1938); English text 421–425

  31. Krätzel, E.: Dedekindsche Funktionen und Summen II. (German). Period. Math. Hung. 12(3), 163–179 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Luke, Y.L.: The Special Functions and Their Approximations, vol. 1, UK Academic Press, INC, Cambridge (1969)

    MATH  Google Scholar 

  33. McCarthy, P.J.: Arithmetische Funktionen. Springer Spektrum, Berlin (2017)

    Book  MATH  Google Scholar 

  34. Van Mieghem, P.: The Mittag-Leffler function, arXiv:2005.13330v4, September 26, (71 pages) (2021)

  35. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  36. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series. More Special Functions, Gordon and Breach, New York (1990)

    MATH  Google Scholar 

  37. Ramanujan, S.: On certain trigonometric sums and their applications in the theory of numbers. Trans. Camb. Philos. Soc. 22, 179–199 (1918)

    Google Scholar 

  38. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)

    MATH  Google Scholar 

  39. Ramanujan, S.: Notebooks, vol. 2. Tata Institute of Fundamental Research, Bombay (1957); 2nd edn (2012)

  40. Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley-Interscience Publication, New York (1996)

    Book  MATH  Google Scholar 

  41. Tenenbaum, G., Wu, J., Li, Y.-L.: Power partitions and saddle-point method. J. Number Theory 204, 435–445 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vlasenko, M., Zagier, D.: Higher Kronecker “limit’’ formulas for real quadratic fields. J. reine angew. Math. 679, 23–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chavan, P., Chavan, S., Vignat, C., Wakhare, T.: Dirichlet series under standard convolutions: variations on Ramanujan’s identity for odd zeta values. Ramanujan J. 59(4), 1245–1285 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wigert, S.: Sur une extension de la série de Lambert. Arkiv Mat. Astron. Fys. 19, 13 (1925)

    MATH  Google Scholar 

  45. Wigert, S.: Sur une nouvelle fonction enti\(\grave{e}\)re et son application \(\grave{a}\) la théorie des nombres. Math. Ann. 96(1), 420–429 (1927)

    Article  MathSciNet  Google Scholar 

  46. Wigert, S.: Note sur la série \(\displaystyle {\sum _{n=1}^{\infty }e^{-n^kx}}\). Tohoku Math. J. 38, 451–457 (1933)

    MATH  Google Scholar 

  47. Wiman, A.: Uber den fundamental satz in der theorie der funcktionen \(E_{a}(x)\). Acta Math. 29, 191–201 (1905)

    Article  MathSciNet  Google Scholar 

  48. Wright, E.M.: Asymptotic partition formulae I. Plane partitions. Q. J. Math. 1, 177–189 (1931)

    Article  MATH  Google Scholar 

  49. Zagier, D.: A Kronecker limit formula for real quadratic fields. Math. Ann. 213, 153–184 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zagier, D.: Power partitions and a generalized eta transformation property. Hardy-Ramanujan J. 44, 1–18 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We sincerely thank the referees for giving nice and important comments which enhanced the quality of the paper. Part of the work was done when the first author was an INSPIRE faculty at IISER Kolkata supported by the DST grant DST/INSPIRE/04/2021/002753. The major part of this work was done when the first author was a postdoctoral fellow at IIT Gandhinagar and was funded by the SERB NPDF grant PDF/2021/001224. The second author is supported by the Swarnajayanti Fellowship grant SB/SJF/2021-22/08 of SERB (Govt. of India). The third author was supported by CSIR SPM Fellowship under the grant number SPM-06/1031(0281)/2018-EMR-I. All of the authors sincerely thank the respective funding agencies for their support. The first author also thanks IIT Gandhinagar for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Dixit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Dixit, A. & Gupta, S. Explicit transformations for generalized Lambert series associated with the divisor function \(\sigma _{a}^{(N)}(n)\) and their applications. Res Math Sci 10, 38 (2023). https://doi.org/10.1007/s40687-023-00401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-023-00401-2

Keywords

Mathematics Subject Classification