Skip to main content

Advertisement

Log in

Multiplicities and mixed multiplicities of arbitrary filtrations

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

We develop a theory of multiplicities and mixed multiplicities of filtrations, extending the theory for filtrations of m-primary ideals to arbitrary (not necessarily Noetherian) filtrations. The mixed multiplicities of r filtrations on an analytically unramified local ring R come from the coefficients of a suitable homogeneous polynomial in r variables of degree equal to the dimension of the ring, analogously to the classical case of the mixed multiplicities of m-primary ideals in a local ring. We prove that the Minkowski inequalities hold for arbitrary filtrations. The characterization of equality in the Minkowski inequality for m-primary ideals in a local ring by Teissier, Rees and Sharp and Katz does not extend to arbitrary filtrations, but we show that they are true in a large and important subcategory of filtrations. We define divisorial and bounded filtrations. The filtration of powers of a fixed ideal is a bounded filtration, as is a divisorial filtration. We show that in an excellent local domain, the characterization of equality in the Minkowski equality is characterized by the condition that the integral closures of suitable Rees like algebras are the same, strictly generalizing the theorem of Teissier, Rees and Sharp and Katz. We also prove that a theorem of Rees characterizing the inclusion of ideals with the same multiplicity generalizes to bounded filtrations in excellent local domains. We give a number of other applications, extending classical theorems for ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharya, P.B.: The Hilbert function of two ideals. Proc. Camb. Phil. Soc. 53, 568–575 (1957)

    Article  MathSciNet  Google Scholar 

  2. Bourbaki, N.: Commutative Algebra, Chapters 1–7. Springer Verlag, Berlin (1989)

    MATH  Google Scholar 

  3. Böger, E.: Einige Bemerkungen zur Theorie der ganzalgebraischen Abhandigkeit von Idealen. Math. Ann. 185, 303–308 (1970)

    Article  MathSciNet  Google Scholar 

  4. Brodmann, M.: Asymptotic stability of \(\text{ Ass }(M/I^nM)\) Proc. Am. Math. Soc. 74, 16–18 (1979)

    MATH  Google Scholar 

  5. Bruns, W., Herzog, J.: Cohen-Macaulay rings, Cambridge studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993) 13H10 (13-02)

  6. Cid-Ruiz, Y., Montaño, J.: Mixed Multiplicities of Graded Families of Ideals, arXiv:2010.11862v1

  7. Cutkosky, S.D.: Introduction to Algebraic Geometry, Graduate studies in Mathematics 188. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  8. Cutkosky, S.D.: Asymptotic multiplicities of graded families of ideals and linear series. Adv. Math. 264, 55–113 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cutkosky, S.D.: Asymptotic Multiplicities. J. Algebra 442, 260–298 (2015)

    Article  MathSciNet  Google Scholar 

  10. Cutkosky, S.D.: Mixed multiplicities of divisorial filtrations. Adv. Math. 358, 106842 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cutkosky, S.D.: The Minkowski equality of filtrations. Adv. Math. 388, 107869 (2021)

    Article  MathSciNet  Google Scholar 

  12. Cutkosky, S.D.: Examples of multiplicities and mixed multiplicities of filtrations. In Commutative Algebra - 150 years with Roger and Sylvia Wiegand, Contemporary Mathematics 773, pp. 19–34, American Mathematical Society (2021)

  13. Cutkosky, S.D., Sarkar, P., Srinivasan, H.: Mixed multiplicities of filtrations. Trans. Am. Math. Soc. 372, 6183–6211 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ein, L., Lazarsfeld, R., Smith, K.: Uniform approximation of Abhyankar valuation ideals in smooth function fields. Am. J. Math. 125, 409–440 (2003)

    Article  MathSciNet  Google Scholar 

  15. Goel, K.: Mixed Multiplicities of Ideals, Lecture Notes, IIT Bombay

  16. Goel, K., Gurjar, R.V., Verma, J.K.: The Minkowskis equality and inequality for multiplicity of ideals of finite length in Noetherian local rings. Contemp. Math. 738 ,(2019)

  17. Goto, S., Nishida, K., Watanabe, K.: Non Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik’s question. Proc. Am. Math. Soc. 120, 383–392 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Grothendieck, A., Dieudonné, J.: Éléments de Géométrie Algébrique IV, Parts 2 and 3, Publ. Math. IHES 24 (1965) and 28 (1966)

  19. Hardy, G., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  20. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg (1977)

  21. Herrmann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing Up: An Algebraic Study. Springer-Verlag, Berlin (1988)

    Book  Google Scholar 

  22. Herrman, M., Schmidt, R., Vogel, W.: Theorie der Normalen Flaxhheit. B.G. Teubner, Leipzig (1977)

    Google Scholar 

  23. Huh, J.: Milnor numbers of projective hypersurfaces and the chromatic polynomials of graphs. J. Am. Math. Soc. 25, 907–927 (2012)

    Article  MathSciNet  Google Scholar 

  24. Katz, D.: Note on multiplicity. Proc. Am. Math. Soc. 104, 1021–1026 (1988)

    Article  MathSciNet  Google Scholar 

  25. Katz, D., Verma, J.: Extended Rees algebras and mixed multiplicities. Math. Z. 202, 111–128 (1989)

    Article  MathSciNet  Google Scholar 

  26. Kaveh, K., Khovanskii, G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 925–978 (2012)

    Article  MathSciNet  Google Scholar 

  27. Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Ec. Norm. Super 42, 783–835 (2009)

    Article  MathSciNet  Google Scholar 

  28. Lipman, J.: Equimultiplicity, reduction and blowing up. In R.N. Draper (ed.) Commutative Algebra, Lecture Notes in Pure and Applied Mathematics, vol. 68, pp. 111–147, Marcel Dekker, New York (1982)

  29. Mustaţă, M.: On multiplicities of graded sequences of ideals. J. Algebra 256, 229–249 (2002)

    Article  MathSciNet  Google Scholar 

  30. Okounkov, A.: Why would multiplicities be log-concave?, in The orbit method in geometry and physics. Progr. Math. 213, 329–347 (2003)

    MATH  Google Scholar 

  31. Ratliff, J.L., Jr.: Locally quasi-unmixed Noetherian rings and ideals of the principal class. Pacific J. Math. 52, 185–205 (1974)

    Article  MathSciNet  Google Scholar 

  32. Rees, D.: \({\cal{A}}\)-transforms of local rings and a theorem on multiplicities of ideals. Proc. Camb. Philos. Soc. 57, 8–17 (1961)

    Article  MathSciNet  Google Scholar 

  33. Rees, D.: Multiplicities, Hilbert, functions and degree functions. In Commutative algebra: Durham,: (Durham 1981), London Mathematical Society Lecture Note Series 72, pp. 170–178, Cambridge University Press, Cambridge 1982, (1981)

  34. Rees, D.: Izumi’s theorem. In Commutative Algebra, pp. 407–416. Springer-Verlag, Berlin (1989)

  35. Rees, D., Sharp, R.: On a Theorem of B Teissier on Multiplicities of Ideals in Local Rings. J. Lond. Math. Soc. 18, 449–463 (1978)

    Article  MathSciNet  Google Scholar 

  36. Roberts, P.C.: A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian. In Proceedings of the AMS pp. 589–592, (1985)

  37. Serre, J.-P.: Algèbre Locale, Multiplicitiés. Lecture Notes in Mathematics, vol. 11. Springer-Verlag, Berlin (1965)

    Google Scholar 

  38. Swanson, I.: Mixed multiplicities, joint reductions and a theorem of Rees. J. Lond. Math. Soc. 48, 1–14 (1993)

    Article  MathSciNet  Google Scholar 

  39. Swanson, I., Huneke, C.: Integral Closure of Ideals. Rings and Modules. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  40. Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse 1972. Astérisque. pp. 7–8, (1973)

  41. Teissier, B.: Sur une inégalité à la Minkowski pour les multiplicités (Appendix to a paper by D. Eisenbud and H. Levine). Ann. Math. 106, 38–44 (1977)

    MATH  Google Scholar 

  42. Teissier, B.: On a Minkowski Type Inequality for Multiplicities II. In C.P. Ramanujam - a tribute, Tata Inst. Fund. Res. Studies in Math. 8, Springer, Berlin-New York (1978)

  43. Trung, N.V., Verma, J.: Mixed multiplicities of ideals versus mixed volumes of polytopes. Trans. Am. Math. Soc. 359, 4711–4727 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Dale Cutkosky.

Additional information

Dedicated to Jürgen Herzog on the occasion of his 80th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by NSF Grant DMS-1700046.

The second author was partially supported by the DST, India: INSPIRE Faculty Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutkosky, S.D., Sarkar, P. Multiplicities and mixed multiplicities of arbitrary filtrations. Res Math Sci 9, 14 (2022). https://doi.org/10.1007/s40687-021-00307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-021-00307-x

Keywords

Mathematics Subject Classification

Navigation