Skip to main content
Log in

A \(C^{1}-C^{0}\) conforming virtual element discretization for the transmission eigenvalue problem

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this study, we present and analyze a virtual element discretization for a nonselfadjoint fourth-order eigenvalue problem derived from the transmission eigenvalue problem. Using suitable projection operators, the sesquilinear forms are discretized by only using the proposed degrees of freedom associated with the virtual spaces. Under standard assumptions on the polygonal meshes, we show that the resulting scheme provides a correct approximation of the spectrum and prove an optimal-order error estimate for the eigenfunctions and a double order for the eigenvalues. Finally, we present some numerical experiments illustrating the behavior of the virtual scheme on different families of meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Beirao da Veiga, L., Scacchi, S., Verani, M.: A \(C^1\) virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

  3. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Osborn, J.: Eigenvalue Problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  5. Beirao da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirao da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhikers guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirao da Veiga, L., Mora, D., Rivera, G.: Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comp. 88(315), 149–178 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirao da Veiga, L., Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the acoustic vibration problem. Numer. Math. 136(3), 725–763 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirao da Veiga, L., Mora, D., Vacca, G.: The Stokes complex for virtual elements with application to Navier-Stokes flows. J. Sci. Comput. 81(2), 990–1018 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2(4), 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boffi, D., Gardini, F., Gastaldi, L.: Approximation of PDE eigenvalue problems involving parameter dependent matrices. Calcolo 57(4), 1–21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, New York (2008)

    Book  MATH  Google Scholar 

  13. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Engrg. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cakoni, F., Kress, R.: A boundary integral equation method for the transmission eigenvalue problem. Appl. Anal. 96(1), 23–38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Camano, J., Rodriguez, R., Venegas, P.: Convergence of a lowest-order finite element method for the transmission eigenvalue problem. Calcolo 33(3), 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Certík, O., Gardini, F., Manzini, G., Vacca, G.: The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Appl. Math. 63(3), 333–365 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Certík, O., Gardini, F., Mascotto, L., Manzini, G., Vacca, G.: The p- and hp-versions of the virtual element method for elliptic eigenvalue problems. Comput. Math. Appl. 79(7), 2035–2056 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, H., Guo, H., Zhang, Z., Zou, Q.: A \(C^0\) linear finite element method for two fourth-order eigenvalue problems. IMA J. Numer. Anal. 37(4), 2120–2138 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM (2002)

  22. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Springer, New York (2013)

    Book  MATH  Google Scholar 

  23. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Problems 26(4), 045011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gardini, F., Manzini, G., Vacca, G.: The nonconforming virtual element method for eigenvalue problems. ESAIM Math. Model. Numer. Anal. 53(3), 749–774 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gardini, F., Vacca, G.: Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal. 38(4), 2026–2054 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geng, H., Ji, X., Sun, J., Xu, L.: \(C^0\)IP methods for the transmission eigenvalue problem. J. Sci. Comput. 68(1), 326–338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grisvard, P.: Elliptic problems in non-smooth domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  28. Han, J., Yang, Y., Bi, H.: A new multigrid finite element method for the transmission eigenvalue problems. Appl. Math. Comput. 292, 96–106 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Lepe, F., Mora, D., Rivera, G., Velasquez, I.: A virtual element method for the Steklov eigenvalue problem allowing small edges. J. Sci. Comput. 88(2), 44 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lepe, F., Rivera, G.: A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem. Comput. Methods Appl. Mech. Engrg. 379, 113753 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meng, J., Mei, L.: A mixed virtual element method for the vibration problem of clamped Kirchhoff plate. Adv. Comput. Math. 68(5), 1–18 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Meng, J., Wang, G., Mei, L.: A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem. Calcolo 2(1), 1–22 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Mora, D., Rivera, G.: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J. Numer. Anal. 40(1), 322–357 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25(8), 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the vibration problem of Kirchhoff plates. ESAIM Math. Model. Numer. Anal. 52(4), 1437–1456 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mora, D., Velásquez, I.: Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Engrg. 360, 112687 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mora, D., Velásquez, I.: Virtual elements for the transmission eigenvalue problem on polytopal meshes. SIAM J. Sci. Comput. 43(4), 2425–2447 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Osborn, J.E.: Spectral approximation for compact operators. Math. Comput. 29, 712–725 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Savaré, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152(1), 176–201 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49(5), 1860–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems. Chapman and Hall/CRC (2016)

  43. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.: Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, Y., Bi, H., Li, H., Han, J.: A \(C^0 IPG\) method and its error estimates for the Helmholtz transmission eigenvalue problem. J. Comput. Appl. Math. 326, 71–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, Y., Han, J., Bi, H.: Error estimates and a two grid scheme for approximating transmission eigenvalues. arXiv preprint arXiv:1506.06486 V2 [math. NA], (2016)

  47. Yang, Y., Han, J., Bi, H.: Non-conforming finite element methods for transmission eigenvalue problem. Comput. Methods Appl. Mech. Engrg. 307, 144–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the National Agency for Research and Development, ANID-Chile, through FONDECYT project 1180913 and by project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, D., Velásquez, I. A \(C^{1}-C^{0}\) conforming virtual element discretization for the transmission eigenvalue problem. Res Math Sci 8, 56 (2021). https://doi.org/10.1007/s40687-021-00291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-021-00291-2

Keywords

Mathematics Subject Classification

Navigation