Skip to main content

Bayesian inversion for an inverse spectral problem of transmission eigenvalues


The transmission eigenvalue problem plays an important role in the inverse scattering theory of inhomogeneous media. In particular, transmission eigenvalues can be reconstructed from scattering data and used to obtain qualitative information about the material properties of the scattering medium. In this paper, we consider the inverse spectral problem to determine the material properties given a few transmission eigenvalues. The lack of theoretical results motivates us to propose a Bayesian approach. The inverse problem is first formulated as a statistical inference problem using the Bayes’ theorem. Then, the MCMC algorithm is used to compute the posterior density. Due to the non-uniqueness nature of the problem, we adopt the local conditional means (LCM) to characterize the posterior density function. Numerical examples show that the proposed method can provide useful information about the unknown material properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    An, J., Shen, J.: A fourier-spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57, 670–688 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Gong, B., Sun, J., Turner, T., Zheng, C.: Finite element approximation of transmission eigenvalues for anisotropic media. arXiv:2001.05340, (2020)

  3. 3.

    Cakoni, F., Colton, D., Haddar, H.: Inverse scattering theory and transmission eigenvalues. SIAM, Philadelphia (2016)

    Book  Google Scholar 

  4. 4.

    Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems 26(7), 074004 (2010)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet or transmission eigenvalues from far field data. C. R. Math. Acad. Sci. Paris 348(7–8), 379–383 (2010)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. Inverse problems and applications: inside out II. 529-580, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge (2013)

  7. 7.

    Cogar, S., Colton, D., Meng, S., Monk, P.: Modified transmission eigenvalues in inverse scattering theory. Inverse Problems 33(12), 125002 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Cossonnière, A., Haddar, H.: Surface integral formulation of the interior transmission problem. J. Integ. Equ. Appl. 25(3), 341–376 (2013)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory, 3rd ed. Appl. Math. Sci. 93 (2013)

  10. 10.

    Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Problems 26(4), 045011 (2010)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imag. 1(1), 13–28 (2007)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Harris, I., Cakoni, F., Sun, J.: Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids. Inverse Problems 30(3), 035016 (2014)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ji, X., Sun, J.: A multi-level method for transmission eigenvalues of anisotropic media. J. Comput. Phys. 255, 422–435 (2013)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, Applied Mathematical Sciences, vol. 160. Springer, New York (2005)

    MATH  Google Scholar 

  15. 15.

    Kaipio, J., Huttunen, T., Luostari, T., Lähivaara, T., Monk, P.: A Bayesian approach to improving the Born approximation for inverse scattering with high-contrast materials. Inverse Problems 35(8), 084001 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kleefeld, A.: A numerical method to compute interior transmission eigenvalues. Inverse Problems 29(10), 104012 (2013)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Li, T., Huang, W., Lin, W., Liu, J.: On spectral analysis and a novel algorithm for transmission eigenvalue problems. J. Sci. Comput. 64, 83–108 (2015)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Li, Z., Deng, Z., Sun, J.: Extended-Sampling-Bayesian method for limited aperture inverse scattering problems. SIAM J. Imag. Sci. 13(1), 422–444 (2020)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Li, Z., Liu, Y., Sun, J., Xu, L.: Quality-Bayesian approach to inverse acoustic source problems with partial data. SIAM J. Sci. Comput. 43(2), A1062–A1080 (2021)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Liu, J., Liu, Y., Sun, J.: An inverse medium problem using Stekloff eigenvalues and a Bayesian approach. Inverse Problems 35(9), 094004 (2019)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49(5), 1860–1874 (2011)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Problems 27(1), 015009 (2011)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Sun, J.: Local estimators and Bayesian inverse problems with non-unique solutions. arXiv:2105.09141 (2021)

  26. 26.

    Sun, J., Zhou, A.: Finite element methods for eigenvalue problems. CRC Press, Taylor & Francis Group, Boca Raton, London, New York (2016)

    Book  Google Scholar 

  27. 27.

    Xie, H., Wu, X.: A multilevel correction method for interior transmission eigenvalue problem. J. Sci. Comput. 72(2), 586–604 (2017)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jiguang Sun.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sun, J. Bayesian inversion for an inverse spectral problem of transmission eigenvalues. Res Math Sci 8, 53 (2021).

Download citation


  • Inverse spectral problem
  • Transmission eigenvalues
  • Bayesian inversion
  • Inhomogeneous media