A generalized Iwasawa’s theorem and its application


We generalize a theorem of Iwasawa on capitulation kernels of class groups over \({{\mathbb {Z}}}_p\)-extensions of number fields to all \({{\mathbb {Z}}}_p^d\)-extensions and discuss some of its applications.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bandini, A.: Greenberg’s conjecture and capitulation in \(Z^d_p\)-extensions. J. Number Theory 122, 121–134 (2007)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bourbaki, N.: Commutative Algebra. Addison Wesley (1972)

  3. 3.

    Greenberg, R.: On the Iwasawa invariants of totally real number fields. Am. J. Math. 98, 263–284 (1976)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Greenberg, R.: Iwasawa theory-past and present. Adv. Stud. Pure Math. 30, 335–385 (2001)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Iwasawa, K.: On \({{{\mathbb{Z}}}} _l\)-extensions of algebraic number fields. Ann. Math. 98, 246–326 (1973)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Iwasawa, K.: On cohomology groups of units for \({{{\mathbb{Z}}}} _p\)-extensions. Am. J. Math. 105, 189–200 (1983)

    Article  Google Scholar 

  7. 7.

    Kaplan, S.: Extensions of Pontrjagin duality II: direct and inverse limits. Duke Math. J. 17, 419–435 (1950)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Lai, K.F., Longhi, I., Tan, K.-S., Trihan, F.: Pontryagin duality for Iwasawa modules and abelian varieties. Trans. Am. Math. Soc. 370(3), 1925–1958 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    McCallum, W.G.: Greenberg’s conjecture and units in multiple \({{{Z }}}_p\)-extensions. Am. J. Math. 123, 909–930 (2001)

    Article  Google Scholar 

  10. 10.

    Monsky, P.: On \(p\)-adic power series. Math. Ann. 255, 217–227 (1981)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Nekovář, J.: Selmer complexes. Astérisque 310, 1–559 (2006)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d’Iwasawa. Mém. Soc. Math. France (N.S.), Vol. 17. Soc. Math. Paris (1984)

  13. 13.

    Suzuki, H.: A generalization of Hilbert’s Theorem 94. Nagoya Math. J. 121, 161–169 (1991)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Tan, K.-S.: A generalized Mazur’s theorem and its applications. Trans. Am. Math. Soc. 362(8), 4433–4450 (2010)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Tan, K.-S.: Selmer groups over \({{{\mathbb{Z}}}} _p^d\)-extensions. Math. Ann. 359, 1025–1075 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Vauclair, D.: Sur la dualité et la descente d’Iwasawa. Ann. Inst. Fourier Grenob. 59(2), 691–767 (2009)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Yamashita, H.: The second cohomology groups of the group of units of a \(Z_p^d\)-extension. Tôhoku Math. J. 36, 75–80 (1984)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ki-Seng Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K.-S. Tan: The author was supported in part by the Ministry of Science and Technology of Taiwan, MOST 103-2115-M-002-008-MY2, MOST 105-2115-M-002-009-MY2. It is our pleasure to thank NCTS/TPE for supporting a number of meetings of the authors in National Taiwan University

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, K.F., Tan, KS. A generalized Iwasawa’s theorem and its application. Res Math Sci 8, 20 (2021). https://doi.org/10.1007/s40687-021-00258-3

Download citation


  • \({\mathbb {Z}}_p^d\) extensions of number fields
  • Class groups
  • Capitulation map
  • Iwasawa theory

Mathematics Subject Classification

  • 11R29 (primary)
  • 11R23
  • 12G05
  • 11R65 (secondary)