Skip to main content
Log in

Applications to \({\mathbb {A}}^1\)-enumerative geometry of the \({\mathbb {A}}^1\)-degree

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

These are lecture notes from the conference Arithmetic Topology at the Pacific Institute of Mathematical Sciences on applications of Morel’s \({\mathbb {A}}^1\)-degree to questions in enumerative geometry. Additionally, we give a new dynamic interpretation of the \({\mathbb {A}}^1\)-Milnor number inspired by the first-named author’s enrichment of dynamic intersection numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A critical point of f is a point where the partials \(\partial _i f\) vanish and a critical point is said to be isolated if there is an open neighborhood around that point not containing other critical points.

  2. A hypersurface of affine (respectively projective) space is the zero locus of a (respectively homogenous) polynomial, and a point x on a scheme X is said to be an isolated singularity if there is a Zariski open neighborhood U of x such that the only singular point of U is x.

  3. The condition that p is an isolated zero of \({\text {grad}}f\) is implied by p being an isolated singularity of X if the characteristic of k is 0.

  4. The reference proves the claim for k algebraically closed. The stated result follows by showing that the coefficients of an algebraic power series lie in a finite extension of k. Moreover, by [18, 19] a perfect extension of a tamely ramified extension of k((t)) lies in \(\cup _{k \subseteq L, n} L((t^{1/n}))\), even without the assumption on the characteristic.

References

  1. Antieau, B., Elmanto, E.: A primer for unstable motivic homotopy theory. Surveys on Recent Developments in Algebraic Geometry. Proceedings of Symposia in Pure Mathematics, vol. 95, pp. 305–370. American Mathematical Society, Providence (2017)

  2. Asok, A., Morel, F.: Smooth varieties up to \({\mathbb{A}}^1\)-homotopy and algebraic \(h\)-cobordisms. Adv. Math. 227(5), 1990–2058 (2011). https://doi.org/10.1016/j.aim.2011.04.009

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachmann, T., Wickelgren, K.: A1-euler classes: six functors formalisms, dualities, integrality and linear subspaces of complete intersections (2020). arXiv:2002.01848

  4. Barge, J., Morel, F.: Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels. C. R. Acad. Sci. Paris Sér. I Math 330(4), 287–290 (2000). https://doi.org/10.1016/S0764-4442(00)00158-0

  5. Bosch, S., Güntzer, U., Remmert, R.: Non-archimedean analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261. Springer, Berlin (1984). https://doi.org/10.1007/978-3-642-52229-1. A systematic approach to rigid analytic geometry

  6. Brazelton, T., Burklund, R., McKean, S., Montoro, M., Opie, M.: The trace of the local \(\mathbb{A}^1\)-degree. Homol. Homotopy Appl. 23(1), 243–255 (2021). https://doi.org/10.4310/hha.2021.v23.n1.a1

    Article  MATH  Google Scholar 

  7. Cazanave, C.: Algebraic homotopy classes of rational functions. Ann. Sci. Éc. Norm. Supér. 45(4), 511–534 (2012). https://doi.org/10.24033/asens.2172

    Article  MathSciNet  MATH  Google Scholar 

  8. Dundas, B.I., Levine, M., Ø stvær, P.A., Röndigs, O., Voevodsky, V.: Motivic Homotopy Theory. Lectures from the Summer School held in Nordfjordeid, August 2002. Universitext. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-45897-5

  9. Eisenbud, D.: An algebraic approach to the topological degree of a smooth map. Bull. Am. Math. Soc. 84(5), 751–764 (1978). https://doi.org/10.1090/S0002-9904-1978-14509-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisenbud, D., Levine, H.I.: An Algebraic Formula for the Degree of a \(C^{\infty }\) Map Germ. Ann. Math. (2) 106(1), 19–44 (1977). With an appendix by Bernard Teissier, “Sur une inégalité à la Minkowski pour les multiplicités”

  11. Fasel, J.: Groupes de Chow–Witt. Mém. Soc. Math. Fr. (N.S.) (113), viii+197 (2008). https://doi.org/10.24033/msmf.425

  12. Grothendieck, A.: Groupes de Monodromie en Géométrie Algébrique. II. Lecture Notes in Mathematics, vol. 340. Springer, Berlin. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II). Dirigé par P. Deligne et N, Katz (1973)

  13. Hartshorne, R.: Residues and Duality. Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer, Berlin (1966)

  14. Hirschhorn, P.S.: Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  15. Itenberg, I.V., Kharlamov, V.M., Shustin, E.I.: Logarithmic equivalence of the Welschinger and the Gromov–Witten invariants. Uspekhi Mat. Nauk 59(6(360)), 85–110 (2004). https://doi.org/10.1070/RM2004v059n06ABEH000797

  16. Kass, J.L., Wickelgren, K.: An Arithmetic Count of the Lines on a Smooth Cubic Surface. Accepted for publication in Compositio Mathematica (2017). arXiv:1708.01175

  17. Kass, J.L., Wickelgren, K.: The class of Eisenbud-Khimshiashvili-Levine is the local \( {A}^1\)-Brouwer degree. Duke Math. J. 168(3), 429–469 (2019). https://doi.org/10.1215/00127094-2018-0046

    Article  MathSciNet  MATH  Google Scholar 

  18. Kedlaya, K.S.: The algebraic closure of the power series field in positive characteristic. Proc. Am. Math. Soc. 129(12), 3461–3470 (2001). https://doi.org/10.1090/S0002-9939-01-06001-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Kedlaya, K.S.: On the algebraicity of generalized power series. Beitr. Algebra Geom. 58(3), 499–527 (2017). https://doi.org/10.1007/s13366-016-0325-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Khimshiashvili, G.N.: The local degree of a smooth mapping. Sakharth. SSR Mecn. Akad. Moambe 85(2), 309–312 (1977)

    MathSciNet  MATH  Google Scholar 

  21. Kock, J., Vainsencher, I.: English translation of: A fórmula de Kontsevich para curvas racionais planas. 22\(^{{{\rm o}}}\) Colóquio Brasileiro de Matemática. [22nd Brazilian Mathematics Colloquium]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro (1999,2002). http://www.math.utah.edu/~yplee/teaching/gw/Koch.pdf

  22. Lam, T.Y.: Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67. American Mathematical Society, Providence (2005)

    Google Scholar 

  23. Lam, T.Y.: Serre’s Problem on Projective Modules. Springer Monographs in Mathematics. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-34575-6

  24. Larson, H., Vogt, I.: An enriched count of the bitangents to a smooth plane quartic curve (2019). ArXiv preprint arXiv:1909.05945

  25. Levine, M.: Motivic homotopy theory. Milan J. Math. 76, 165–199 (2008). https://doi.org/10.1007/s00032-008-0088-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Levine, M.: Toward a new enumerative geometry (2017). arXiv:1703.03049

  27. Levine, M.: Toward an algebraic theory of Welschinger invariants (2018). arXiv:1808.02238

  28. Levine, M.: Motivic Euler characteristics and Witt-valued characteristic classes. Nagoya Math. J. (2018). https://doi.org/10.1017/nmj.2019.6

    Article  MATH  Google Scholar 

  29. Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009). https://doi.org/10.1515/9781400830558

  30. Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8, second edn. Cambridge University Press, Cambridge (1989). Translated from the Japanese by M. Reid

  31. McKean, S.: An arithmetic enrichment of Bézout’s theorem. Math. Ann. 379(1), 633–660 (2021)

    Article  MathSciNet  Google Scholar 

  32. Milnor, J.: Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, vol. 61. Princeton University Press, Princeton (1968)

  33. Milnor, J.: Algebraic \(K\)-theory and quadratic forms. Invent. Math. 9, 318–344 (1969/1970). https://doi.org/10.1007/BF01425486

  34. Milnor, J.W.: Topology from the Differentiable Viewpoint. The University Press of Virginia, Charlottesville. Based on notes by David W. Weaver (1965)

    MATH  Google Scholar 

  35. Morel, F.: \({\mathbb{A}}^1\)-Algebraic Topology Over a Field. Lecture Notes in Mathematics, vol. 2052. Springer, Heidelberg (2012)

  36. Morel, F., Voevodsky, V.: \({\mathbb{A}}^1\)-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. (90), 45–143 (2001) (1999)

  37. Ojanguren, M., Panin, I.: A purity theorem for the Witt group. Ann. Sci. École Norm. Sup. (4) 32(1), 71–86 (1999). https://doi.org/10.1016/S0012-9593(99)80009-3

  38. Orlik, P.: The multiplicity of a holomorphic map at an isolated critical point. In: Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 405–474 (1977)

  39. Orlov, D., Vishik, A., Voevodsky, V.: An exact sequence for \(K^M_\ast /2\) with applications to quadratic forms. Ann. Math. (2) 165(1), 1–13 (2007). https://doi.org/10.4007/annals.2007.165.1

  40. Palamodov, V.P.: The multiplicity of a holomorphic transformation. Funk. Anal. i Priložen 1(3), 54–65 (1967)

    MathSciNet  Google Scholar 

  41. Pauli, S.: Computing a1-Euler numbers with macaulay2 (2020). ArXiv preprint arXiv:2003.01775

  42. Pauli, S.: Quadratic types and the dynamic Euler number of lines on a quintic threefold (2020). ArXiv preprint arXiv:2006.12089

  43. Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten. J. Reine Angew. Math. 278(279), 174–190 (1975)

    MathSciNet  MATH  Google Scholar 

  44. Serre, J.P.: Local Fields, Graduate Texts in Mathematics, vol. 67. Springer, New York (1979). Translated from the French by Marvin Jay Greenberg

  45. Solomon, J.P.: Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions. ProQuest LLC, Ann Arbor, MI (2006). Thesis (Ph.D.)–Massachusetts Institute of Technology

  46. Srinivasan, P., Wickelgren, K.: An arithmetic count of the lines meeting four lines in \({\mathbb{P}}^{3}\) (2018). With an appendix by Borys Kadets, Padmavathi Srinivasan, Ashvin A. Swaminathan, Libby Taylor, and Dennis Tseng. Accepted for publication in Transactions of AMS. arXiv:1810.03503

  47. Stacks Project Authors, T.: Stacks Project (2018). https://stacks.math.columbia.edu

  48. Voevodsky, V.: Motivic cohomology with \( {Z}/2\)-coefficients. Publ. Math. Inst. Hautes Études Sci. 98, 59–104 (2003). https://doi.org/10.1007/s10240-003-0010-6

    Article  MathSciNet  MATH  Google Scholar 

  49. Voevodsky, V.: Reduced power operations in motivic cohomology. Publ. Math. Inst. Hautes Études Sci. 98, 1–57 (2003). https://doi.org/10.1007/s10240-003-0009-z

    Article  MathSciNet  MATH  Google Scholar 

  50. Weibel, C.A.: The \(K\)-Book, Graduate Studies in Mathematics, vol. 145. American Mathematical Society, Providence (2013). An introduction to algebraic \(K\)-theory

  51. Wendt, M.: Oriented Schubert calculus in Chow–Witt rings of Grassmannians. In: Motivic homotopy theory and refined enumerative geometry. Contemp. Math., vol. 745, pp. 217–267. American Mathethical Society, Providence ([2020] 2020). https://doi.org/10.1090/conm/745/15027

  52. Wickelgren, K., Williams, B.: Unstable motivic homotopy theory. In: Handbook of Homotopy Theory, Chapman and Hall Handbooks in Mathematics, pp. 931–973. CRC Press (2020). arXiv:1902.08857

Download references

Acknowledgements

Kirsten Wickelgren was partially supported by NSF CAREER Grant DMS-2001890. Sabrina Pauli gratefully acknowledges support by the RCN Frontier Research Group Project No. 250399 Motivic Hopf Equations. We also wish to thank Joe Rabinoff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Wickelgren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauli, S., Wickelgren, K. Applications to \({\mathbb {A}}^1\)-enumerative geometry of the \({\mathbb {A}}^1\)-degree. Res Math Sci 8, 24 (2021). https://doi.org/10.1007/s40687-021-00255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-021-00255-6

Keywords

Navigation