Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Analyticity of Steklov eigenvalues of nearly circular and nearly spherical domains

  • 8 Accesses


We consider the Dirichlet-to-Neumann operator (DNO) on nearly circular and nearly spherical domains in two and three dimensions, respectively. Treating such domains as perturbations of the ball, we prove the analyticity of the DNO with respect to the domain perturbation parameter. Consequently, the Steklov eigenvalues are also shown to be analytic in the domain perturbation parameter. To obtain these results, we use the strategy of Nicholls and Nigam (J Comput Phys 194(1):278–303, 2004. https://doi.org/10.1016/j.jcp.2003.09.006); we transform the equation on the perturbed domain to a ball and geometrically bound the Neumann expansion of the transformed Dirichlet-to-Neumann operator.

This is a preview of subscription content, log in to check access.


  1. 1.

    Throughout this paper, we use the notation \(\mathbb {N}\) to denote the positive integers.


  1. 1.

    Akhmetgaliyev, E., Kao, C.-Y., Osting, B.: Computational methods for extremal Steklov problems. SIAM J. Control Optim. 55(2), 1226–1240 (2017). https://doi.org/10.1137/16M1067263

  2. 2.

    Arendt, W., ter Elst, A., Kennedy, J., Sauter, M.: The Dirichlet-to-Neumann operator via hidden compactness. J. Funct. Anal. 266(3), 1757–1786 (2014). https://doi.org/10.1016/j.jfa.2013.09.012

  3. 3.

    Brauchart, J.S., Dick, J.: A characterization of Sobolev spaces on the sphere and an extension of Stolarsky’s invariance principle to arbitrary smoothness. Constr. Approx. 38(3), 397–445 (2013). https://doi.org/10.1007/s00365-013-9217-z

  4. 4.

    Fang, Q., Nicholls, D.P., Shen, J.: A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering. J. Comput. Phys. 224(2), 1145–1169 (2007). https://doi.org/10.1016/j.jcp.2006.11.018

  5. 5.

    Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem. J. Spectr. Theory 7(2), 321–359 (2017). https://doi.org/10.4171/jst/164

  6. 6.

    Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, London (1976). https://doi.org/10.1007/978-3-662-12678-3

  7. 7.

    Knopp, K.: Theory of Functions, part two. Dover Publications, New York (1947)

  8. 8.

    Nicholls, D.P., Nigam, N.: Exact non-reflecting boundary conditions on general domains. J. Comput. Phys. 194(1), 278–303 (2004). https://doi.org/10.1016/j.jcp.2003.09.006

  9. 9.

    Nicholls, D.P., Shen, J.: A stable high-order method for two-dimensional bounded-obstacle scattering. SIAM J. Sci. Comput. 28(4), 1398–1419 (2006). https://doi.org/10.1137/050632920

  10. 10.

    Nicholls, D.P., Reitich, F.: A new approach to analyticity of Dirichlet–Neumann operators. Proc. R. Soc. Edinb. Sect. A Math. 131(6), 1411–1433 (2001). https://doi.org/10.1017/s0308210500001463

  11. 11.

    NIST: Digital Library of Mathematical Functions. https://dlmf.nist.gov/14.30

  12. 12.

    Viator, R., Osting, B.: Steklov eigenvalues of reflection-symmetric nearly circular planar domains. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2220), 20180072 (2018). https://doi.org/10.1098/rspa.2018.0072

Download references


We would like to thank Nilima Nigam, Fadil Santosa, and Chee Han Tan for helpful discussions. B. Osting is partially supported by NSF DMS 16-19755 and 17-52202. We would also like to thank the referees for their helpful comments.

Author information

Correspondence to Braxton Osting.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viator, R., Osting, B. Analyticity of Steklov eigenvalues of nearly circular and nearly spherical domains. Res Math Sci 7, 4 (2020). https://doi.org/10.1007/s40687-020-0202-4

Download citation


  • Dirichlet-to-Neumann operator
  • Steklov eigenvalues
  • Perturbation theory

Mathematics Subject Classification

  • 26E05
  • 35C20
  • 35P05
  • 41A58