The global field Euler function

Abstract

We define the Euler function of a global field and recover the fundamental properties of the classical arithmetical function. In addition, we prove the holomorphicity of the associated zeta function. As an application, we recover analogs of the mean value theorems of Mertens and Erdős–Dressler–Bateman. The exposition is aimed at non-experts in arithmetic statistics, with the intention of providing insight toward the generalization of arithmetical functions to other contexts within arithmetic topology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    one-dimensional separated scheme of finite type.

  2. 2.

    We adopt this notation for the real and imaginary part of a complex variable s throughout the manuscript.

References

  1. 1.

    Paul, T.: Bateman, the distribution of values of the euler function. Acta Arithmetica 21(1), 329–345 (1972)

    MathSciNet  Google Scholar 

  2. 2.

    Dressler, R.: A density which counts multiplicity. Pac. J. Math. 34(2), 371–378 (1970)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Ellenberg, J.S: Arizona winter school notes - geometric analytic number theory (2014)

  4. 4.

    Erdős, P.: Some remarks on Euler’s \(\phi \) function and some related problems. Bull Am Math Soc 51(8), 540–544 (1945)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Ford, K., Luca, F., Pomerance, C.: Common values of the arithmetic functions \(\phi \) and \(\sigma \). Bul. Lond. Math. Soc. 42(3), 478–488 (2010)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ikehara, S.: An extension of Landau’s theorem in the analytical theory of numbers. J. Math. Phys. 10(1–4), 1–12 (1931)

    Article  Google Scholar 

  7. 7.

    Meisner, P.: On incidences of \(\varphi \) and \(\sigma \) in the function field setting. Journal de Théorie des Nombres de Bordeaux 31(2), 403–415 (2019)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Mertens, F.: Ueber einige asymptotische gesetze der zahlentheorie. Journal für die reine und angewandte Mathematik 77, 289–338 (1874)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Montgomery, H.L., Vaughan, R.C.: Multiplicative Number Theory I: Classical Theory, vol. 97. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  10. 10.

    Neukirch, Jürgen: Algebraic Number Theory, vol. 322. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  11. 11.

    Poonen, B.: Lectures on rational points on curves (2006)

  12. 12.

    Rosen, M.: Number Theory in Function Fields, vol. 210. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  13. 13.

    Rudnick, Z., Peled, R.: On locally repeated values of arithmetic functions over \({F}_q [t]\). Quart. J. Math. 70(2), 451–472 (2019)

    Article  Google Scholar 

  14. 14.

    Joseph, H.: Silverman, The Arithmetic of Elliptic Curves, vol. 106. Springer Science & Business Media, Berlin (2009)

    Google Scholar 

  15. 15.

    Wiener, N.: Tauberian theorems. Ann. Math. 44–45 (1932)

Download references

Acknowledgements

We thank Guillermo Mantilla-Soler for very helpful discussions and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Santiago Arango-Piñeros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arango-Piñeros, S., Rojas, J.D. The global field Euler function. Res Math Sci 7, 19 (2020). https://doi.org/10.1007/s40687-020-00218-3

Download citation