A framework for modular properties of false theta functions

  • Kathrin BringmannEmail author
  • Caner Nazaroglu


False theta functions closely resemble ordinary theta functions; however, they do not have the modular transformation properties that theta functions have. In this paper, we find modular completions for false theta functions, which among other things gives an efficient way to compute their obstruction to modularity. This has potential applications for a variety of contexts where false and partial theta series appear. To exemplify the utility of this derivation, we discuss the details of its use on two cases. First, we derive a convergent Rademacher-type exact formula for the number of unimodal sequences via the circle method and extend earlier work on their asymptotic properties. Secondly, we show how quantum modular properties of the limits of false theta functions can be rederived directly from the modular completion of false theta functions proposed in this paper.


Circle method Completions False theta functions Mock theta functions Modular forms 

Mathematics Subject Classification

11F12 11F20 11F27 11F30 11F37 11F50 11P82 



The authors thank Chris Jennings-Shaffer for helpful comments on an earlier version of the paper.


  1. 1.
    Alladi, K.: A new combinatorial study of the Rogers-Fine identity and a related partial theta series. Int. J. Number Theory 5, 1311–1320 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrews, G.: Ramanujan’s “lost” notebook I. Partial \(\theta \)-functions. Adv. Math. 41, 137–172 (1981)Google Scholar
  3. 3.
    Apostol, T.: Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, vol. 41. Springer, New York (1990)CrossRefGoogle Scholar
  4. 4.
    Auluck, F.: On some new types of partitions associated with generalized Ferrers graphs. Proc. Camb. Philos. Soc. 47, 679–686 (1951)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bringmann, K., Creutzig, T., Rolen, L.: Negative index Jacobi forms and quantum modular forms. Res. Math. Sci. 1, 1–11 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bringmann, K., Milas, A.: \(W\)-algebras, false theta functions, and quantum modular forms, I. Int. Math. Res. Not. 21, 11351–11387 (2015)Google Scholar
  7. 7.
    Cheng, M., Chun, S., Ferrari, F., Gukov, S., Harrison, S.: 3d Modularity. arXiv:1809.10148 [hep-th]
  8. 8.
    Chung, H.: BPS Invariants for Seifert Manifolds. arXiv:1811.08863 [hep-th]
  9. 9.
    Cohen, H., Strömberg, F.: Modular Forms: A Classical Approach—Graduate Studies in Mathematics, vol. 179. Amer. Math. Soc, Providence (2017)CrossRefGoogle Scholar
  10. 10.
    Creutzig, T., Milas, A.: False theta functions and the Verlinde formula. Adv. Math. 262, 520–545 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Creutzig, T., Milas, A., Wood, S.: On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions. Int. Math. Res. Not. 2017, 1390–1432 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fine, N.: Basic hypergeometric series and applications. In: Mathematical Surveys and Monographs, vol. 27, Amer. Math. Soc., Providence (1988)Google Scholar
  13. 13.
    Garoufalidis, S., Lê, T.: Nahm sums, stability and the colored Jones polynomial. Res. Math. Sci. 2, 1 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hikami, S.: Mock (false) theta functions as quantum invariants. Regul. Chaotic Dyn. 10, 509–530 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lawrence, R., Zagier, D.: Modular forms and quantum invariants of \(3\)-manifolds. Asian J. Math. 3, 93–107 (1999)Google Scholar
  16. 16.
    Rademacher, H.: On the partition function \(p(n)\). Proc. Lond. Math. Soc. 43, 241–254 (1937)Google Scholar
  17. 17.
    Ramanujan, S.: The Last Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)zbMATHGoogle Scholar
  18. 18.
    Shimura, G.: On modular forms of half-integral weight. Ann. Math. 97, 440–481 (1973)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wright, E.: Stacks (II). Quart. J. Math. Oxford Ser. 22, 107–116 (1971)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zagier, D.: Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology 40, 945–960 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zagier, D.: Quantum modular forms. In: Clay Mathematics Proceedings , vol. 11, Amer. Math. Soc., Providence (2010)Google Scholar
  22. 22.
    Zwegers, S.: Mock theta functions. Ph.D. Thesis, Universiteit Utrecht (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of CologneCologneGermany

Personalised recommendations