Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Graduate Texts in Mathematics, vol. 161. Springer, New York (1995)
MATH
Google Scholar
Bourgade, P.: On Random Matrices and \(L\)-Functions, Ph.D. Thesis, New York University. http://www.cims.nyu.edu/~bourgade/papers/PhDThesis.pdf
Cantero, M., Iserles, A.: From orthogonal polynomials on the unit circle to functional equations via generating functions. Trans. Am. Math. Soc. 368(6), 4027–4063 (2016)
MathSciNet
Article
Google Scholar
Charris, J., Ismail, M.E.H.: Sieved orthogonal polynomials VII: generalized polynomial mappings. Trans. Am. Math. Soc. 340(1), 71–93 (1993)
MathSciNet
MATH
Google Scholar
Charris, J., Ismail, M.E.H., Monsalve, S.: On sieved orthogonal polynomials X: general blocks of recurrence relations. Pac. J. Math. 163(2), 237–267 (1994)
MathSciNet
Article
Google Scholar
Danka, T.: Universality limits for generalized Jacobi measures. Adv. Math. 316, 613–666 (2017)
MathSciNet
Article
Google Scholar
Danka, T., Totik, V.: Christoffel functions with power type weights. J. Eur. Math. Soc. 20(3), 747–796 (2018)
MathSciNet
Article
Google Scholar
de Jesus, M.N., Petronilho, J.: On orthogonal polynomials obtained via polynomial mappings. J. Approx. Theory 162(12), 2243–2277 (2010)
MathSciNet
Article
Google Scholar
Geronimo, J., Van Assche, W.: Orthogonal polynomials with asymptotically periodic recurrence coefficients. J. Approx. Theory 46(3), 251–283 (1986)
MathSciNet
Article
Google Scholar
Geronimo, J., Van Assche, W.: Orthogonal polynomials on several intervals via a polynomial mapping. Trans. Am. Math. Soc. 308(2), 559–581 (1988)
MathSciNet
Article
Google Scholar
Geronimous, Y.: Sur quelques équations aux différences finies et les systèmes correspondants des polynômes orthogonaux. C. R. (Doklady) Acad. Sci. URSS (N.S.) 29, 536–538 (1940)
MathSciNet
MATH
Google Scholar
Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials. Cambridge University Press, Cambridge (2005)
Book
Google Scholar
Ismail, M.E.H., Li, X.: On sieved orthogonal polynomials IX: orthogonality on the unit circle. Pac. J. Math. 153(2), 289–297 (1992)
MathSciNet
Article
Google Scholar
Korenev, B.G.: Bessel Functions and Their Applications, Translated from the Russian by E. V. Pankratiev. Analytical Methods and Special Functions 8, Taylor & Francis, Ltd., London (2002)
Levin, E., Lubinsky, D.: Universality limits involving orthogonal polynomials on the unit circle. Comput. Methods Funct. Theory 7, 543–561 (2007)
MathSciNet
Article
Google Scholar
Lubinsky, D.: Universality limits at the hard edge of the spectrum for measures with compact support. Int. Math. Res. Not. IMRN 2008 (2008)
Lubinsky, D., Nguyen, V.: Universality limits involving orthogonal polynomials on an arc of the unit circle. Comput. Methods Funct. Theory 13(1), 91–106 (2013)
MathSciNet
Article
Google Scholar
Lukashov, A.: Circular parameters of polynomials that are orthogonal on several arcs of the unit circle. Mat. Sb. 195(11), 95–118 (2004)
MathSciNet
Article
Google Scholar
Máté, A., Nevai, P., Totik, V.: Szegő’s extremum problem on the unit circle. Ann. Math. (2) 134(2), 433–453 (1991)
MathSciNet
Article
Google Scholar
McLaughlin, J.: Combinatorial identities deriving from the \(n\)th power of a \(2\times 2\) matrix. Integers: Electr. J. Combin. Number Theory 4, A19 (2004)
MATH
Google Scholar
Peherstorfer, F., Steinbauer, R.: Orthogonal polynomials on arcs of the unit circle. II. Orthogonal polynomials with periodic reflection coefficients. J. Approx. Theory 87(1), 60–102 (1996)
MathSciNet
Article
Google Scholar
Peherstorfer, F., Steinbauer, R.: Asymptotic behaviour of orthogonal polynomials on the unit circle with asymptotically periodic reflection coefficients. J. Approx. Theory 88(3), 316–353 (1997)
MathSciNet
Article
Google Scholar
Peherstorfer, F., Steinbauer, R.: Strong asymptotics of orthonormal polynomials with the aid of Green’s function. SIAM J. Math. Anal. 32(2), 385–402 (2000)
MathSciNet
Article
Google Scholar
Peherstorfer, F., Steinbauer, R.: Asymptotic behaviour of orthogonal polynomials on the unit circle with asymptotically periodic reflection coefficients. II. Weak asymptotics. J. Approx. Theory 105(1), 102–128 (2000)
MathSciNet
Article
Google Scholar
Peherstorfer, F., Steinbauer, R.: Orthogonal polynomials on the circumference and arcs of the circumference. J. Approx. Theory 102(1), 96–119 (2000)
MathSciNet
Article
Google Scholar
Pintér, F., Nevai, P.: Schur functions and orthogonal polynomials on the unit circle, in “Approximation Theory and Function Series”. Bolyai Soc. Math. Stud. 5, 293–306 (1996). (János Bolyai Math. Soc., Budapest)
MATH
Google Scholar
Simanek, B.: The Bergman shift operator on polynomial lemniscates. Constr. Approx. 41(1), 113–131 (2015)
MathSciNet
Article
Google Scholar
Simanek, B.: Two universality results for polynomial reproducing kernels. J. Approx. Theory 216, 16–37 (2017)
MathSciNet
Article
Google Scholar
Simanek, B.: Universality at an endpoint for orthogonal polynomials with Geronimus-type weights. Proc. Am. Math. Soc. 146(9), 3995–4007 (2018)
MathSciNet
Article
Google Scholar
Simon, B.: Ratio asymptotics and weak asymptotic measures for orthogonal polynomials on the real line. J. Approx. Theory 126(2), 198–217 (2004)
MathSciNet
Article
Google Scholar
Simon, B.: Orthogonal Polynomials on the Unit Circle, Part One: Classical Theory. American Mathematical Society, Providence, RI (2005)
MATH
Google Scholar
Simon, B.: Orthogonal Polynomials on the Unit Circle, Part Two: Spectral Theory. American Mathematical Society, Providence, RI (2005)
MATH
Google Scholar
Simon, B.: Fine structure of the zeros of orthogonal polynomials. III. Periodic recursion coefficients. Commun. Pure Appl. Math. 59(7), 1042–1062 (2006)
MathSciNet
Article
Google Scholar
Simon, B.: The Christoffel-Darboux kernel, in Perspectives in partial differential equations, harmonic analysis and applications. In: Proceedings of Symposia in Pure Mathematics, vol. 79, pp. 295–335 American Mathematical Society, Providence, RI (2008)
Simon, B.: Szegő’s Theorem and Its Descendants, Spectral Theory for \(L^2\) Perturbations of Orthogonal Polynomials. Princeton University Press, Princeton, NJ (2011)
MATH
Google Scholar
Stahl, H., Totik, V.: General Orthogonal Polynomials. Cambridge University Press, Cambridge (1992)
Book
Google Scholar
Totik, V.: Universality and fine zero spacing on general sets. Ark. Mat. 47(2), 361–391 (2009)
MathSciNet
Article
Google Scholar