Skip to main content
Log in

Modularity of generating series of winding numbers

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

The Shimura correspondence connects modular forms of integral weights and half-integral weights. One of the directions is realized by the Shintani lift, where the inputs are holomorphic differentials and the outputs are holomorphic modular forms of half-integral weight. In this article, we generalize this lift to differentials of the third kind. As an application, we obtain a modularity result concerning the generating series of winding numbers of closed geodesics on the modular curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfes, C., Ehlen, S.: Twisted traces of CM values of weak Maass forms. J. Number Theory 133(6), 1827–1845 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruinier, J., Ono, K.: Heegner divisors, \(L\)-functions and harmonic weak Maass forms. Ann. Math. (2) 172(3), 2135–2181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruinier, J.H., Funke, J.: On two geometric theta lifts. Duke Math. J. 125(1), 45–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruinier, J.H., Funke, J.: Traces of CM values of modular functions. J. Reine Angew. Math. 594, 1–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruinier, J.H., Schwagenscheidt, M.: Algebraic formulas for the coefficients of mock theta functions and Weyl vectors of Borcherds products. J. Algebra 478, 38–57 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dabholkar, A., Murthy, S., Zagier, D.: Quantum black holes, wall crossing, and mock modular forms (2012). arXiv:1208.4074

  8. Funke, J.: Heegner divisors and nonholomorphic modular forms. Compos. Math. 133(3), 289–321 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Funke, J., Kudla, S.: Mock modular forms and geometric theta functions for indefinite quadratic forms. J. Phys. A Math. Theor. 50, 404001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Funke, J., Kudla, S.: Theta integrals and generalized error functions, II (2017). arXiv:1708.02969

  11. Funke, J., Millson, J.: Cycles in hyperbolic manifolds of non-compact type and Fourier coefficients of Siegel modular forms. Manuscr. Math. 107(4), 409–444 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griffiths, P.A.: Introduction to Algebraic Curves. Translations of Mathematical Monographs, vol. 76, American Mathematical Society, Providence (1989). Translated from the Chinese by Kuniko Weltin

  13. Gross, B., Kohnen, W., Zagier, D.: Heegner points and derivatives of \(L\)-series. II. Math. Ann. 278(1–4), 497–562 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirzebruch, F., Zagier, D.: Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math. 36, 57–113 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kudla, S.: Theta integrals and generalized error functions. Manuscr. Math. 155, 303–333 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kudla, S.S., Millson, J.J.: Geodesic cyclics and the Weil representation. I. Quotients of hyperbolic space and Siegel modular forms. Compos. Math. 45(2), 207–271 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Kudla, S.S., Millson, J.J.: The theta correspondence and harmonic forms. II. Math. Ann. 277(2), 267–314 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kudla, S.S., Millson, J.J.: Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Inst. Hautes Études Sci. Publ. Math. 71, 121–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Scholl, A.J.: Fourier coefficients of Eisenstein series on noncongruence subgroups. Math. Proc. Camb. Philos. Soc. 99(1), 11–17 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shimura, G.: On modular forms of half integral weight. Ann. Math. (2) 97, 440–481 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shintani, T.: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J. 58, 83–126 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Skoruppa, N.-P.: Explicit formulas for the Fourier coefficients of Jacobi and elliptic modular forms. Invent. Math. 102(3), 501–520 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Voight, J.: Shimura Curve Computations. Arithmetic Geometry, Clay Mathematics Proceedings, vol. 8, pp. 103–113. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  24. Waldschmidt, M.: Nombres transcendants et groupes algébriques. Astérisque, vol. 69. Société Mathématique de France, Paris (1979). With appendices by Daniel Bertrand and Jean-Pierre Serre, With an English summary

  25. Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  26. Wüstholz, G.: Zum Periodenproblem. Invent. Math. 78(3), 381–391 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zagier, D.: Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann). Astérisque (2009), no. 326, Exp. No. 986, vii–viii, 143–164 (2010). Séminaire Bourbaki, vol. 2007/2008

  28. Zwegers, S.P.: Mock \(\theta \)-Functions and Real Analytic Modular Forms, \(q\)-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000). Contemporary Mathematics, vol. 291, pp. 269–277. American Mathematical Society, Providence (2001)

    Google Scholar 

  29. Zwegers, S.P.: Mock theta functions. Proefschrift Universiteit Utrecht, Thesis (Ph.D.), Universiteit Utrecht (2002)

Download references

Author's contributions

Acknowlegements

Most of this work was done during visits by J.F. to TU Darmstadt, by J.F. and Y.L. to FIM in Zürich in 2017. We thank these organizations for their supports. We also thank the referees for careful readings and helpful comments and corrections. J.B and Y.L. are supported by the DFG Grant BR-2163/4-2 and the LOEWE research unit USAG. Y.L. is also partially supported by an NSF postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Imamoḡlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruinier, J.H., Funke, J., Imamoḡlu, Ö. et al. Modularity of generating series of winding numbers. Res Math Sci 5, 23 (2018). https://doi.org/10.1007/s40687-018-0140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-018-0140-6

Navigation