Partitions of unity in \(\mathrm {SL}(2,\mathbb Z)\), negative continued fractions, and dissections of polygons

  • Valentin Ovsienko


We characterize sequences of positive integers \((a_1,a_2,\ldots ,a_n)\) for which the \(2\times 2\) matrix \(\left( \begin{array}{ll} a_n&{} \quad -\,1\\ 1&{}\quad 0 \end{array} \right) \left( \begin{array}{ll} a_{n-1}&{}\quad -\,1\\ 1&{}\quad 0 \end{array} \right) \cdots \left( \begin{array}{ll} a_1&{}\quad -\,1\\ 1&{}\quad 0 \end{array} \right) \) is either the identity matrix \(\mathrm {Id}\), its negative \(-\,\mathrm {Id}\), or square root of \(-\,\mathrm {Id}\). This extends a theorem of Conway and Coxeter that classifies such solutions subject to a total positivity restriction.



  1. 1.
    Aigner, M.: Markov’s Theorem and 100 Years of the Uniqueness Conjecture. A Mathematical Journey from Irrational Numbers to Perfect Matchings. Springer, Cham (2013)zbMATHGoogle Scholar
  2. 2.
    Baur, K., Marsh, R.: Frieze patterns for punctured discs. J. Algebraic Combin. 30, 349–379 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baur, K., Parsons, M., Tschabold, M.: Infinite friezes. Eur. J. Combin. 54, 220–237 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bergeron, F., Reutenauer, C.: \(SL_k\)-tilings of the plane. Ill. J. Math. 54, 263–300 (2010)zbMATHGoogle Scholar
  5. 5.
    Bessenrodt, C., Holm, T., Jorgensen, P.: Generalized frieze pattern determinants and higher angulations of polygons. J. Combin. Theory Ser. A 123, 30–42 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Conley, C., Ovsienko, V.: Rotundus: triangulations, Chebyshev polynomials, and Pfaffians. Math. Intell. arXiv:1707.09106 (to appear)
  7. 7.
    Conway, J.H., Coxeter, H.S.M.: Triangulated polygons and frieze patterns. Math. Gaz. 57, 87–94 (1973). and 175–183MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Coxeter, H.S.M.: Frieze patterns. Acta Arith. 18, 297–310 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coxeter, H.S.M., Rigby, J.F.: Frieze patterns, triangulated polygons and dichromatic symmetry. In: Guy, R.K., Woodrow, E. (eds.) The Lighter Side of Mathematics. MAA Spectrum, pp. 15–27. Mathematical Association of America, Washington, DC (1994)Google Scholar
  10. 10.
    Cuntz, M.: On wild Frieze patterns. Exp. Math. 26, 342–348 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cuntz, M., Heckenberger, I.: I Weyl groupoids of rank two and continued fractions. Algebra Number Theory 3, 317–340 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Delyon, F., Souillard, B.: The rotation number for finite difference operators and its properties. Commun. Math. Phys. 89, 415–426 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Math. 204, 203–229 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hall, R., Shiu, P.: The index of a Farey sequence. Mich. Math. J. 51, 209–223 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Revised by D. R. Heath-Brown and J. H. Silverman. With a foreword by Andrew Wiles, 6th edn, p. 621. Oxford University Press, Oxford (2008)Google Scholar
  16. 16.
    Henry, C.-S.: Coxeter friezes and triangulations of polygons. Am. Math. Mon. 120, 553–558 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Holm, T., Jorgensen, P.: A \(p\)-angulated generalisation of Conway and Coxeter’s theorem on frieze patterns. arXiv:1709.09861
  18. 18.
    Krichever, I.: Commuting difference operators and the combinatorial Gale transform. Funct. Anal. Appl. 49, 175–188 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Morier-Genoud, S.: Coxeter’s frieze patterns at the crossroads of algebra, geometry and combinatorics. Bull. Lond. Math. Soc. 47, 895–938 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Morier-Genoud, S., Ovsienko, V., Schwartz, R., Tabachnikov, S.: Linear difference equations, frieze patterns and combinatorial Gale transform. Forum Math. Sigma 2, e22 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Morier-Genoud, S., Ovsienko, V., Tabachnikov, S.: \(2\)-Frieze patterns and the cluster structure of the space of polygons. Ann. Inst. Fourier 62, 937–987 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Morier-Genoud, S., Ovsienko, V., Tabachnikov, S.: \(\text{ SL }_{2}(\mathbb{R})\)-tilings of the torus, Coxeter–Conway friezes and Farey triangulations. Enseign. Math. 61, 71–92 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Simon, B.: Sturm Oscillation and Comparison Theorems, Sturm–Liouville theory, pp. 29–43. Birkhäuser, Basel (2005)zbMATHGoogle Scholar
  24. 24.
    Sklyanin, E.K.: The Quantum Toda Chain. Nonlinear Equations in Classical and Quantum Field Theory. Lecture Notes in Physics, vol. 226, pp. 196–233. Springer, Berlin (1985)CrossRefGoogle Scholar
  25. 25.
    Zagier, D.: Nombres de classes et fractions continues. In: Journées Arithmétiques de Bordeaux (Conference, Univ. Bordeaux, 1974) Astérisque, vol. 24–25, pp. 81–97 (1975)Google Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques U.F.R. Sciences Exactes et NaturellesCentre national de la recherche scientifiqueReims cedex 2France

Personalised recommendations