Advertisement

The cohomology of Deligne–Lusztig varieties for the general linear group

  • Sascha Orlik
Research
  • 64 Downloads

Abstract

We propose two inductive approaches for determining the cohomology of Deligne–Lusztig varieties in the case of \(G={{\mathrm{GL}}}_n\). The first one uses Demazure compactifications and analyzes the corresponding Mayer–Vietoris spectral sequence. This allows us to give an inductive formula for the Tate twist \(-1\) contribution of the cohomology of a DL-variety. The second approach relies on considering more generally DL-varieties attached to hypersquares in the Weyl group. Here we give explicit formulas for the cohomology of height-one elements.

Notes

Acknowledgements

I want to thank Olivier Dudas for his numerous remarks on this paper. I am grateful for the invitation to Paris and all the discussions with François Digne and Jean Michel. Finally I thank Roland Huber, Michael Rapoport and Markus Reineke for their support. Dedicated to Michael Rapoport on the occasion of his 65th birthday.

References

  1. 1.
    Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of g-modules. In: Gel’fand, I.M. (ed.) Lie Groups and Their Representations (Proceedings of Summer School, Bolyai János Mathematical Society, Budapest, 1971), pp. 21–64. Halsted, New York (1975)Google Scholar
  2. 2.
    Billey, S., Lakshmibai, V.: Singular Loci of Schubert Varieties. Progress in Mathematics, vol. 182. Birkhäuser, Boston (2000)CrossRefMATHGoogle Scholar
  3. 3.
    Bloch, S.: Algebraic cycles and higher K-theory. Adv. Math. 61(3), 267–304 (1986)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Broué, M., Michel, J.: Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées, Finite Reductive Groups, Progress in Mathematics, vol. 141, pp. 73–139. Birkhäuser Boston, Boston, MA (1997)MATHGoogle Scholar
  5. 5.
    Deligne, P.: Action du groupe des tresses sur une catgorie. Invent. Math. 128(1), 159–175 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math. (2) 103(1), 103–161 (1976)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Digne, F., Michel, J.: Endomorphisms of Deligne–Lusztig varieties. Nagoya Math. J. 183, 35–103 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Digne, F., Michel, J., Rouquier, R.: Cohomologie des variétés de Deligne–Lusztig. Adv. Math. 209(2), 749–822 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dat, J.-F., Orlik, S., Rapoport, M.: Period Domains Over Finite and p-Adic Fields, Cambridge Tracts in Mathematics, vol. 183. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  10. 10.
    Drinfeld, V.G.: Coverings of p-adic symmetric domains. Funkcional. Anal. i Prilozen 10(2), 29–40 (1976)MathSciNetGoogle Scholar
  11. 11.
    Dudas, O.: Cohomology of Deligne–Lusztig varieties for short-length regular elements in exceptional groups. J. Algebra 392, 276–298 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fulton, W., Harris, J.: Representation Theory. A First Course. Graduate Texts in Mathematics. Readings in Mathematics, vol. 129. Springer, New York (1991)Google Scholar
  13. 13.
    Fulton, W.: Intersection theory. Second ed. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), vol. 2. Springer, Berlin (1998)Google Scholar
  14. 14.
    Genestier, A.: Espaces symétriques de Drinfeld, Astérisque No. 234 (1996)Google Scholar
  15. 15.
    Grosse-Klönne, E.: Integral structures in the p-adic holomorphic discrete series. Represent. Theory 9, 354–384 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Geck, M., Pfeiffer, G.: On the irreducible characters of Hecke algebras. Adv. Math. 102(1), 79–94 (1993)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, London Mathematical Society Monographs. New Series, vol. 21. The Clarendon Press, New York (2000)MATHGoogle Scholar
  18. 18.
    Geck, M., Kim, S., Pfeiffer, G.: Minimal length elements in twisted conjugacy classes of finite Coxeter groups. J. Algebra 229(2), 570–600 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hazewinkel, M., Vorst, T.: On the Snapper/Liebler–Vitale/Lam Theorem on permutation representations of the symmetric group. J. Pure Appl. Algebra 23, 29–32 (1982)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Howe, R.: Harish-Chandra Homomorphisms for p-Adic Groups. With the Collaboration of Allen Moy. CBMS Regional Conference Series in Mathematics, vol. 59. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence, RI (1985)Google Scholar
  21. 21.
    Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, vol. E30. Friedrich Vieweg und Sohn, Braunschweig (1996)CrossRefMATHGoogle Scholar
  22. 22.
    Ito, T.: Weight-monodromy conjecture for \(p\)-adically uniformized varieties. Invent. Math. 159(3), 607–656 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kumar, S.: Kac–Moody Groups, their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhuser, Boston (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Lehrer, G.I.: The spherical building and regular semisimple elements. Bull. Aust. Math. Soc. 27(3), 361–379 (1983)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius. Invent. Math. 38(2), 101–159 (1976/1977)Google Scholar
  26. 26.
    Lusztig, G.: Characters of Reductive Groups Over a Finite Field. Annals of Mathematics Studies, vol. 107. Princeton University Press, Princeton (1984)MATHGoogle Scholar
  27. 27.
    Lusztig, G.: Homology bases arising from reductive groups over a finite field. In: Carter, R.W., et al. (eds.), Algebraic Groups and their Representations Proceedings of the NATO Advanced Study Institute on modular representations and subgroup structure of algebraic groups and related finite groups, Cambridge, UK, June 23–July 4, 1997. NATO ASI Series C, Mathematical Physical Sciences, vol. 517, pp. 53–72. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  28. 28.
    Liebler, R.A., Vitale, M.R.: Ordering the partition characters of the symmetric group. J. Algebra 25, 487–489 (1973)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Orlik, S.: Kohomologie von Periodenbereichen über endlichen Körpern. J. Reine Angew. Math. 528, 201–233 (2000)MathSciNetMATHGoogle Scholar
  30. 30.
    Rémy, B., Thuillier, A., Werner, A.: Automorphisms of Drinfeld half-spaces over a finite field. Compos. Math. 149, 1211–1224 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Séminaire de Géomtrie Algébrique du Bois Marie: Cohomologie l-adique et Fonctions L—(SGA 5). Lecture Notes in Mathematics, vol. 589. Springer, Berlin (1965–1966)Google Scholar
  32. 32.
    Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105, 47–122 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Fachbereich C - Mathematik und NaturwissenschaftenBergische Universität WuppertalWuppertalGermany

Personalised recommendations