On the trace formula for Hecke operators on congruence subgroups, II

Part of the following topical collections:
  1. Modular Forms are Everywhere: Celebration of Don Zagier’s 65th Birthday


In a previous paper, we obtained a general trace formula for double coset operators acting on modular forms for congruence subgroups, expressed as a sum over conjugacy classes. Here we specialize it to the congruence subgroups \(\Gamma _0(N)\) and \(\Gamma _1(N)\), obtaining explicit formulas in terms of class numbers for the trace of a composition of Hecke and Atkin–Lehner operators. The formulas are among the simplest in the literature and hold without any restriction on the index of the operators. We give two applications of the trace formula for \(\Gamma _1(N)\): we determine explicit trace cusp forms for \(\Gamma _0(4)\) with Nebentypus, and we compute the limit of the trace of a fixed Hecke operator as the level N tends to infinity.


Trace formula Hecke operators Holomorphic modular forms 

Mathematics Subject Classification

11F11 11F25 


Author's contributions


This work was partly supported by the European Community Grant PIRG05-GA-2009-248569 and by the CNCS-UEFISCDI Grant TE-2014-4-2077. Part of this work was completed during several visits at MPIM in Bonn, whose support I gratefully acknowledge. It is a great pleasure to dedicate this paper to Don Zagier on the occasion of his 65th birthday.


  1. 1.
    Ahlgren, S.: The points of a certain fivefold over finite fields and the twelfth power of the eta function. Finite Fields Their Appl. 8, 18–33 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cohen, H.: Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann. 217, 271–285 (1975)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cohen, H.: Trace des opérateurs de Hecke sur \(\Gamma _0(N)\). Séminaire de Théorie des Nombres de Bordeau, 1976–1977, pp. 4-01–4-09Google Scholar
  4. 4.
    Eichler, M.: Über die Darstellbarkeit von Modulformen durch Thetareihen. J. Reine Angew. Math. 195, 156–171 (1955)MathSciNetMATHGoogle Scholar
  5. 5.
    Hijikata, H.: Explicit formula of the traces of Hecke operators for \(\Gamma _0(N)\). J. Math. Soc. Jan. 26(1), 56–82 (1974)CrossRefMATHGoogle Scholar
  6. 6.
    Kaplan, N., Petrow, I.: Elliptic curves over a finite field and the trace formula. Proc. Lond. Math. Soc. 115, 1317–1372 (2017).  https://doi.org/10.1112/plms.12069 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Mertens, M.H.: Mock modular forms and class number relations. Res. Math. Sci. 1, 6 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Oesterlé, J.: Sur la trace des opérateurs de Hecke. Université Paris-Sud, Orsay, Thèse de troisième cycle (1977)Google Scholar
  9. 9.
    Popa, A.A.: On the trace formula for Hecke operators on congruence subgroups. Am. Math. Soc. Proc. (2017).  https://doi.org/10.1090/proc/13896 (Early view)
  10. 10.
    Popa, A.A., Zagier, D.: An elementary proof of the Eichler–Selberg trace formula. Arxiv:1711.00327 (2017)
  11. 11.
    Popa, A.A., Zagier, D.: A combinatorial refinement of the Kronecker–Hurwitz class number relation. Proc. Am. Math. Soc. 145(3), 1003–1008 (2017)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rădulescu, F.: Endomorphisms of spaces of virtual vectors fixed by a discrete group. Russ. Math. Surv. 71, 291–343 (2016)CrossRefMATHGoogle Scholar
  13. 13.
    Saito, H.: On Eichler’s trace formula. J. Math. Soc. Jpn. 24, 333–340 (1972)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. (N.S.) 20, 47–8 (1956)MathSciNetMATHGoogle Scholar
  15. 15.
    Serre, J.-P.: Répartition asymptotique des valeurs propres de l’opérateur de Hecke \(T_p\). J. AMS 10, 75–102 (1997)MathSciNetMATHGoogle Scholar
  16. 16.
    Shimura, G.: On the trace formula for Hecke operators. Acta Math. 132, 245–281 (1974)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Skoruppa, N.-P., Zagier, D.: Jacobi forms and a certain space of modular forms. Invent. Math. 94, 113–146 (1988)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zagier, D.: Hecke operators and periods of modular forms. In: Israel Mathematical Conference Proceedings, vol. 3, pp. 321–336 (1990)Google Scholar
  19. 19.
    Zagier, D.: Periods of modular forms, traces of Hecke operators, and multiple zeta values. Research into automorphic forms and \(L\)-functions (Kyoto, 1992). Sūrikaisekikenkyūsho Kōkyūroku 843, 162–170 (1993)Google Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations