Skip to main content
Log in

A Study on the Coupling Effect of Draping Angle and Size of a Draped Composite Egg-Box Structure on Its Deformation

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Draping simulation of complex egg-box structure is conducted using non-orthogonal constitutive VUMAT code and composite lay-up model. Laminated shell is modelled considering tension, in-plane shear, bending properties, and the influence of laminate thickness on the draping process to improved the finite element model, for high simulation accuracy. To determine the effect of draping angle and structure size on drapability, four draping angles (0°, 15°, 30°, 45°) and three structure sizes (small, medium, large) are considered in the simulation. The results are compared with experimental results. Shear deformation pattern, including wrinkle generation, is investigated in terms of structure size and draping angle by using a unit cell with two major axes (side-wall and saddle).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Ahmad, H., Markina, A., Porotnikov, M., & Ahmad, F. (2020). A review of carbon fiber materials in automotive industry. IOP Conference Series: Materials Science and Engineering, 2020, 1.

    Google Scholar 

  2. Choi, J. Y., Jeon, J. H., Lyu, J. H., Park, J., Kim, G. Y., Chey, S. Y., Quan, Y.-J., Bhandari, B., Prusty, B. G., & Ahn, S.-H. (2023). Current applications and development of composite manufacturing processes for future mobility. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(1), 269–291.

    Article  Google Scholar 

  3. Kim, D.-J., Lim, J., Nam, B., Kim, H.-J., & Kim, H.-S. (2021). Design and manufacture of automotive hybrid steel/carbon fiber composite B-pillar component with high crashworthiness. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 547–559.

    Article  Google Scholar 

  4. Kim, J.-H., Lee, H.-S., & Chang, S.-H. (2022). Application of carbon/epoxy composites to robot console structure for high stiffness with lightweight. Composite Structures, 300, 116121.

    Article  Google Scholar 

  5. Parveez, B., Kittur, M., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. (2022). Scientific advancements in composite materials for aircraft applications: A review. Polymers, 14(22), 5007.

    Article  Google Scholar 

  6. Seo, J., Kim, D. C., Park, H., Kang, Y. S., & Park, H. W. (2023). Advancements and challenges in the carbon fiber-reinforced polymer (CFRP) trimming process. International Journal of Precision Engineering and Manufacturing-Green Technology, 2023, 1–20.

    Google Scholar 

  7. Seo, J., Kim, D. Y., Kim, D. C., & Park, H. W. (2021). Recent developments and challenges on machining of carbon fiber reinforced polymer composite laminates. International Journal of Precision Engineering and Manufacturing, 2021, 1–18.

    Google Scholar 

  8. Cartie, D. D., & Fleck, N. A. (2003). The effect of pin reinforcement upon the through-thickness compressive strength of foam-cored sandwich panels. Composites Science and Technology, 63(16), 2401–2409.

    Article  Google Scholar 

  9. Harte, A.-M., Fleck, N. A., & Ashby, M. F. (2000). Energy absorption of foam-filled circular tubes with braided composite walls. European Journal of Mechanics-A/Solids, 19(1), 31–50.

    Article  Google Scholar 

  10. Liu, Z., Li, Y., Hao, Y., Ma, Z., & Gu, X. (2023). Analysis and optimization of laying process parameters of carbon fiber reinforced thermoplastic composites for additive manufacturing using robot. International Journal of Precision Engineering and Manufacturing, 2023, 1–25.

    Google Scholar 

  11. Yang, M., Sun, W., & Li, W. (2023). On transverse strength prediction of unidirectional carbon fiber reinforced polymer composites at elevated temperatures. Composites Communications, 40, 101598.

    Article  Google Scholar 

  12. Yoo, S.-H., Park, S.-W., & Chang, S.-H. (2010). An experimental study on the effect of tow variations on compressive characteristics of plain weave carbon/epoxy composites under compressions. Composite structures, 92(3), 736–744.

    Article  Google Scholar 

  13. Yoo, S., Chang, S. H., & Sutcliffe, M. (2010). Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures. Composites Part A: Applied Science and Manufacturing, 41(3), 427–434.

    Article  Google Scholar 

  14. Yoo, S. H., & Chang, S. H. (2008). An experimental study on energy absorbing structures made of fabric composites. Composite Structures, 86(1–3), 211–219.

    Article  Google Scholar 

  15. Chung, J., Chang, S. H., & Sutcliffe, M. (2007). Deformation and energy absorption of composite egg-box panels. Composites Science and Technology, 67(11–12), 2342–2349.

    Article  Google Scholar 

  16. Deshpande, V., & Fleck, N. (2003). Energy absorption of an egg-box material. Journal of the Mechanics and Physics of Solids, 51(1), 187–208.

    Article  Google Scholar 

  17. Zupan, M., Chen, C., & Fleck, N. (2003). The plastic collapse and energy absorption capacity of egg-box panels. International Journal of Mechanical Sciences, 45(5), 851–871.

    Article  Google Scholar 

  18. Han, M.-G., & Chang, S.-H. (2021). Compression characteristics, energy absorption, and feasibility evaluation of egg-box panels made of long fibre prepreg sheets. Composite Structures, 262, 113379.

    Article  Google Scholar 

  19. Hahn, Y., Chang, S. H., & Cheon, S. S. (2009). Finite element analysis of compression behavior of composite egg-box panel with non-orthogonal constitutive model. SAE International Journal of Materials and Manufacturing, 2(1), 352–357.

    Article  Google Scholar 

  20. Han, M.-G., & Chang, S.-H. (2021). Draping simulations of carbon/epoxy fabric prepregs using a non-orthogonal constitutive model considering bending behavior. Composites Part A: Applied Science and Manufacturing, 148, 106483.

    Article  Google Scholar 

  21. Han, M.-G., & Chang, S.-H. (2021). Simulation of the compressive behaviour of a composite egg-box core with fibre orientation-mapping technique and progressively degraded material properties. Composites Part A: Applied Science and Manufacturing, 142, 106272.

    Article  Google Scholar 

  22. Jagpal, R., Evangelou, E., Butler, R., & Loukaides, E. G. (2022). Multiple ply preforming of non-crimp fabrics with distributed magnetic clamping. Composites Communications, 31, 101107.

    Article  Google Scholar 

  23. Boisse, P. (2020). Simulation of continuous fibre composite forming. In Mechanics of fibrous materials and applications (pp. 157–193). Springer.

  24. Bussetta, P., & Correia, N. (2018). Numerical forming of continuous fibre reinforced composite material: A review. Composites Part A: Applied Science and Manufacturing, 113, 12–31.

    Article  Google Scholar 

  25. Lee, J.-M., Kim, B.-M., Min, B.-J., Park, J.-H., & Ko, D.-C. (2017). Formability of CFRTP prepreg considering heat transfer. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 161–168.

    Article  Google Scholar 

  26. Potter, K. (1979). The influence of accurate stretch data for reinforcements on the production of complex structural mouldings: Part 1. Deformation of aligned sheets and fabrics. Composites, 10(3), 161–167.

    Article  Google Scholar 

  27. Robertson, R. E., Hsiue, E., Sickafus, E., & Yeh, G. (1981). Fiber rearrangements during the molding of continuous fiber composites. I. Flat cloth to a hemisphere. Polymer Composites, 2(3), 126–131.

    Article  Google Scholar 

  28. Allaoui, S., Boisse, P., Chatel, S., Hamila, N., Hivet, G., Soulat, D., & Vidal-Salle, E. (2011). Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Composites Part A: Applied Science and Manufacturing, 42(6), 612–622.

    Article  Google Scholar 

  29. Iwata, A., Inoue, T., Naouar, N., Boisse, P., & Lomov, S. V. (2019). Coupled meso-macro simulation of woven fabric local deformation during draping. Composites Part A: Applied Science and Manufacturing, 118, 267–280.

    Article  Google Scholar 

  30. Deng, T., Zhang, W., Jiang, W., Zhou, H., Huang, Z., Peng, X., Zhou, H., & Li, D. (2021). A hybrid lamination model for simulation of woven fabric reinforced thermoplastic composites solid-state thermo-stamping. Materials and Design, 200, 109419.

    Article  Google Scholar 

  31. Guzman-Maldonado, E., Bel, S., Bloom, D., Fideu, P., & Boisse, P. (2022). Experimental and numerical analyses of the mechanical behavior during draping of non-orthogonal bi-axial non-crimp fabric composite reinforcements. Materials and Design, 218, 110682.

    Article  Google Scholar 

  32. Han, M.-G., & Chang, S.-H. (2018). Draping simulation of carbon/epoxy plain weave fabrics with non-orthogonal constitutive model and material behavior analysis of the cured structure. Composites Part A: Applied Science and Manufacturing, 110, 172–182.

    Article  Google Scholar 

  33. Peng, X., & Cao, J. (2005). A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Composites Part A: Applied Science and Manufacturing, 36(6), 859–874.

    Article  Google Scholar 

  34. Wang, B., Chen, Z., Fang, G., & Meng, S. (2022). Non-orthogonal FE model with stress smoothing for progressive damage analysis of shear pre-deformed 3D angle-interlock woven composites under compression. International Journal of Mechanical Sciences, 232, 107642.

    Article  Google Scholar 

  35. Xu, J., Zhang, Y., Yu, Q., & Zhang, L. (2022). Analysis and design of fabric membrane structures: A systematic review on material and structural performance. Thin-Walled Structures, 170, 108619.

    Article  Google Scholar 

  36. Boisse, P., Colmars, J., Hamila, N., Naouar, N., & Steer, Q. (2018). Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations. Composites Part B: Engineering, 141, 234–249.

    Article  Google Scholar 

  37. Mei, M., He, Y., Yang, X., & Wei, K. (2021). Analysis and experiment of deformation and draping characteristics in hemisphere preforming for plain woven fabrics. International Journal of Solids and Structures, 222, 111039.

    Article  Google Scholar 

  38. Döbrich, O., Gereke, T., Diestel, O., Krzywinski, S., & Cherif, C. (2014). Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation. Journal of Industrial Textiles, 44(1), 70–84.

    Article  Google Scholar 

  39. Kunze, E., Galkin, S., Böhm, R., Gude, M., & Kärger, L. (2020). The impact of draping effects on the stiffness and failure behavior of unidirectional non-crimp fabric fiber reinforced composites. Materials, 13(13), 2959.

    Article  Google Scholar 

  40. Lamers, E., Akkerman, R., & Wijskamp, S. (2002). Drape modelling of multi layer fabric reinforced thermoplastic laminates. Proceedings of the Texcomp, 6, 1.

    Google Scholar 

  41. Lamers, E., Wijskamp, S., & Akkerman, R. (2003). Drape modelling of multi-layered composites. In 6th international ESAFORM conference on material forming.

  42. Zhang, Y., Huang, Z.-M., & Ramakrishna, S. (2001). Tensile behaviour of multilayer knitted fabric composites with different stacking configuration. Applied Composite Materials, 8, 279–295.

    Article  Google Scholar 

  43. Bai, R., Chen, B., Colmars, J., & Boisse, P. (2022). Physics-based evaluation of the drapability of textile composite reinforcements. Composites Part B: Engineering, 242, 110089.

    Article  Google Scholar 

  44. Chen, S., McGregor, O., Endruweit, A., Elsmore, M., De Focatiis, D., Harper, L., & Warrior, N. (2017). Double diaphragm forming simulation for complex composite structures. Composites Part A: Applied Science and Manufacturing, 95, 346–358.

    Article  Google Scholar 

  45. Mendoza, A., Schneider, J., Parra, E., & Roux, S. (2019). Measuring yarn deformations induced by the manufacturing process of woven composites. Composites Part A: Applied Science and Manufacturing, 120, 127–139.

    Article  Google Scholar 

  46. Xu, P., Li, X., Feng, F., Li, X., & Yang, Y. (2023). Experimental and numerical studies on two-point incremental forming of woven fabric composite sheet. Journal of Manufacturing Processes, 85, 205–215.

    Article  Google Scholar 

  47. Aridhi, A., Arfaoui, M., Mabrouki, T., Naouar, N., Denis, Y., Zarroug, M., & Boisse, P. (2019). Textile composite structural analysis taking into account the forming process. Composites Part B: Engineering, 166, 773–784.

    Article  Google Scholar 

  48. Rashidi, A., & Milani, A. (2018). A multi-step biaxial bias extension test for wrinkling/de-wrinkling characterization of woven fabrics: Towards optimum forming design guidelines. Materials and Design, 146, 273–285.

    Article  Google Scholar 

  49. Wang, J., Wang, P., Hamila, N., & Boisse, P. (2020). Mesoscopic analyses of the draping of 3D woven composite reinforcements based on macroscopic simulations. Composite Structures, 250, 112602.

    Article  Google Scholar 

  50. Xie, J., Guo, Z., Shao, M., Zhu, W., Jiao, W., Yang, Z., & Chen, L. (2022). Mechanics of textiles used as composite preforms: A review. Composite Structures, 2022, 116401.

    Google Scholar 

  51. Chang, S. H., Sharma, S., & Sutcliffe, M. (2003). Microscopic investigation of tow geometry of a dry satin weave fabric during deformation. Composites Science and Technology, 63(1), 99–111.

    Article  Google Scholar 

  52. Sharma, S., Sutcliffe, M., & Chang, S. H. (2003). Characterisation of material properties for draping of dry woven composite material. Composites Part A: Applied Science and Manufacturing, 34(12), 1167–1175.

    Article  Google Scholar 

  53. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525–1534.

    Google Scholar 

  54. Yu, F., Chen, S., Viisainen, J., Sutcliffe, M., Harper, L., & Warrior, N. (2020). A macroscale finite element approach for simulating the bending behaviour of biaxial fabrics. Composites Science and Technology, 191, 108078.

    Article  Google Scholar 

  55. Kärger, L., Galkin, S., Dörr, D., & Poppe, C. (2020). Capabilities of macroscopic forming simulation for large-scale forming processes of dry and impregnated textiles. Procedia Manufacturing, 47, 140–147.

    Article  Google Scholar 

  56. Poppe, C., Rosenkranz, T., Dörr, D., & Kärger, L. (2019). Comparative experimental and numerical analysis of bending behaviour of dry and low viscous infiltrated woven fabrics. Composites Part A: Applied Science and Manufacturing, 124, 105466.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (RS-2023-00208286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hwan Chang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, JL., Chang, SH. A Study on the Coupling Effect of Draping Angle and Size of a Draped Composite Egg-Box Structure on Its Deformation. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-024-00611-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-024-00611-1

Keywords

Navigation