Skip to main content
Log in

Dry Transfer Printed Hole Transport Layer for Hysteresis-Free Colloidal Quantum Dot Solar Cells

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Colloidal quantum dot (CQD) solar cells have drawn a lot of attention because of their potential for bandgap engineering, which enables broad and powerful absorption in the wavelength of sunlight, and low-cost process based on the solution phase production. However, the interfacial problems resulting from the heterojunction structure containing electron and hole transport layers cause a hysteresis phenomenon that weakens the device stability. We used the dry-transfer technique to implement a hole transport layer (HTL) with enhanced interfacial properties in devices. This approach is highly reproducible and allows for precise thickness control of the HTL. It also uses substantially less environmentally harmful organic solvents for the ligand exchange process than those required by the previous layer-by-layer (LbL) deposition technique. Additionally, about 400 nm thick CQD film could be deposited without the ligand exchange process, and a power conversion efficiency of 10% with minimized hysteresis was achieved using this method. Moreover, by improving the interfacial properties over the traditional LbL approach, it was feasible to lower the charge transfer resistance related to the device's hysteresis by a factor of up to four or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data are available from the corresponding authors on reasonable request.

References

  1. Donegá, C. D. M. (2011). Synthesis and properties of colloidal heteronanocrystals. Chemical Society Reviews, 40, 1512–1546.

    Article  Google Scholar 

  2. Gao, J., Jeong, S., Lin, F., Erslev, P. T., Semonin, O. E., Luther, J. M., & Beard, M. C. (2013). Improvement in carrier transport properties by mild thermal annealing of PbS quantum dot solar cells. Applied Physics Letters, 102, 043506.

    Article  Google Scholar 

  3. Chuang, C.-H.M., Brown, P. R., Bulović, V., & Bawendi, M. G. (2014). Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 13, 796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kramer, I. J., & Sargent, E. H. (2014). The architecture of colloidal quantum dot solar cells: Materials to devices. Chemical Reviews, 114, 863–882.

    Article  CAS  PubMed  Google Scholar 

  5. Jang, J., Shim, H. C., Ju, Y., An, H., Yu, J.-S., Kwak, S.-W., Lee, T.-M., Kim, I., & Jeong, S. (2015). All-solution-processed PbS quantum dot solar modules. Nanoscale, 7, 8829–8834.

    Article  CAS  PubMed  Google Scholar 

  6. Kirmani, A. R., Sheikh, A. D., Niazi, M. R., Haque, M. A., Liu, M., De Arquer, F. P. G., Xu, J., Sun, B., Voznyy, O., Gasparini, N., Baran, D., Wu, T., & Sargent, E. H. (2018). Overcoming the ambient manufacturability-scalability-performance bottleneck in colloidal quantum dot photovoltaics. Advanced Materials, 30, 1801661.

    Article  Google Scholar 

  7. Krebs, F. C., Gevorgyan, S. A., & Alstrup, J. (2009). A roll-to-roll process to flexible polymer solar cells. Journal of Materials Chemistry, 19, 5442–5451.

    Article  CAS  Google Scholar 

  8. Kramer, I. J., Moreno-Bautista, G., Minor, J. C., Kopilovic, D., & Sargent, E. H. (2014). Colloidal quantum dot solar cells on curved and flexible substrates. Applied Physics Letters, 105, 163902.

    Article  Google Scholar 

  9. Zhang, X., Öberg, V. A., Du, J., Liu, J., & Johansson, E. M. J. (2018). Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy & Environmental Science, 11, 354–364.

    Article  CAS  Google Scholar 

  10. Zhang, X., Aitola, K., Hägglund, C., Kaskela, A., Johansson, M. B., Sveinbjörnsson, K., Kauppinen, E. I., & Johansson, E. M. J. (2017). Dry-deposited transparent carbon nanotube film as front electrode in colloidal quantum dot solar cells. Chemsuschem, 10, 434–441.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y., Gu, M., Li, N., Xu, Y., Ling, X., Wang, Y., Zhou, S., Li, F., Yang, F., Ji, K., Yuan, J., & Ma, W. (2018). Realizing solution-processed monolithic PbS QDs/perovskite tandem solar cells with high UV stability. Journal of Materials Chemistry A, 6, 24693–24701.

    Article  CAS  Google Scholar 

  12. Liu, M., Voznyy, O., Sabatini, R., de Arquer, F. P. G., Munir, R., Balawi, A. H., Lan, X., Fan, F., Walters, G., Kirmani, A. R., Hoogland, S., Laquai, F., Amassian, A., & Sargent, E. H. (2017). Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nature Materials, 16, 258–263.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, J., Voznyy, O., Liu, M., Kirmani, A. R., Walters, G., Munir, R., Abdelsamie, M., Proppe, A. H., Sarkar, A., de Arquer, F. P. G., Wei, M., Sun, B., Liu, M., Ouellette, O., Quintero-Bermudez, R., Li, J., Fan, J., Quan, L., Todorovic, P., … Sargent, E. H. (2018). 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology, 13, 456–462.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, J., Ouellette, O., Voznyy, O., Wei, M., Choi, J., Choi, M.-J., Jo, J. W., Baek, S.-W., Fan, J., Saidaminov, M. I., Sun, B., Li, P., Nam, D.-H., Hoogland, S., Lu, Z.-H., de Arquer, F. P. G., & Sargent, E. H. (2018). Butylamine-catalyzed synthesis of nanocrystal inks enables efficient infrared CQD solar cells. Advanced Materials, 30, 1803830.

    Article  Google Scholar 

  15. Choi, M.-J., de Arquer, F. P. G., Proppe, A. H., Seifitokaldani, A., Choi, J., Kim, J., Baek, S.-W., Liu, M., Sun, B., Biondi, M., Scheffel, B., Walters, G., Nam, D.-H., Jo, J. W., Ouellette, O., Voznyy, O., Hoogland, S., Kelley, S. O., Jung, Y. S., & Sargent, E. H. (2020). Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications, 11, 103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi, J. J., Lim, Y.-F., Santiago-Berrios, M. B., Oh, M., Hyun, B.-R., Sun, L., Bartnik, A. C., Goedhart, A., Malliaras, G. G., Abruña, H. D., Wise, F. W., & Hanrath, T. (2009). PbSe nanocrystal excitonic solar cells. Nano Letters, 9, 3749–3755.

    Article  CAS  PubMed  Google Scholar 

  17. Pattantyus-Abraham, A. G., Kramer, I. J., Barkhouse, A. R., Wang, X., Konstantatos, G., Debnath, R., Levina, L., Raabe, I., Nazeeruddin, M. K., Gratzel, M., & Sargent, E. H. (2010). Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 4, 3374–3380.

    Article  CAS  PubMed  Google Scholar 

  18. Gao, J., Perkins, C. L., Luther, J. M., Hanna, M. C., Chen, H.-Y., Semonin, O. E., Nozik, A. J., Ellingson, R. J., & Beard, M. C. (2011). n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Letters, 11, 3263–3266.

    Article  CAS  PubMed  Google Scholar 

  19. Gao, J., Luther, J. M., Semonin, O. E., Ellingson, R. J., Nozik, A. J., & Beard, M. C. (2011). Quantum dot size dependent J−V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Letters, 11, 1002–1008.

    Article  CAS  PubMed  Google Scholar 

  20. Yao, K., Li, F., He, Q., Wang, X., Jiang, Y., Huang, H., & Jen, A. K. Y. (2017). A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells. Nano Energy, 40, 155–162.

    Article  CAS  Google Scholar 

  21. Lin, L., Jones, T. W., Wang, J.T.-W., Cook, A., Pham, N. D., Duffy, N. W., Mihaylov, B., Grigore, M., Anderson, K. F., Duck, B. C., Wang, H., Pu, J., Li, J., Chi, B., & Wilson, G. J. (2020). Strategically constructed bilayer tin (IV) oxide as electron transport layer boosts performance and reduces hysteresis in perovskite solar cells. Small (Weinheim an der Bergstrasse, Germany), 16, 1901466.

    Article  CAS  Google Scholar 

  22. Song, J. H., Mai, X. D., Jeong, S., & Kim, Y.-H. (2017). Hysteresis and photoinstability caused by mobile ions in colloidal quantum dot photovoltaics. Journal of Physical Chemistry Letters, 8, 5259–5263.

    Article  CAS  PubMed  Google Scholar 

  23. Lau, C. F. J., Deng, X., Zheng, J., Kim, J., Zhang, Z., Zhang, M., Bing, J., Wilkinson, B., Hu, L., Patterson, R., Huanga, S., & Ho-Baillie, A. (2018). Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, 6, 5580–5586.

    Article  CAS  Google Scholar 

  24. Son, D.-Y., Kim, S.-G., Seo, J.-Y., Lee, S.-H., Shin, H., Lee, D., & Park, N.-G. (2018). Universal approach toward hysteresis-free perovskite solar cell via defect engineering. Journal of the American Chemical Society, 140, 1358–1364.

    Article  CAS  PubMed  Google Scholar 

  25. Hu, Z., Miao, J., Li, T., Liu, M., Murtaza, I., & Meng, H. (2018). Reduced interface losses in inverted perovskite solar cells by using a simple dual-functional phenanthroline derivative. Nano Energy, 43, 72–80.

    Article  CAS  Google Scholar 

  26. Kovalenko, M. V., Scheele, M., & Talapin, D. V. (2009). Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science, 324, 1417–1420.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Z., Janmohamed, A., Lan, X., de Arquer, F. P. G., Voznyy, O., Yassitepe, E., Kim, G.-H., Ning, Z., Gong, X., Comin, R., & Sargent, E. H. (2015). Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Letters, 15, 7539–7543.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Q., Yun, H. J., Liu, W., Song, H.-J., Makarov, N. S., Isaienko, O., Nakotte, T., Chen, G., Luo, H., Klimov, V. I., & Pietryga, J. M. (2017). Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films. Journal of the American Chemical Society, 139, 6644–6653.

    Article  CAS  PubMed  Google Scholar 

  29. Mailoa, J. P., Bailie, C. D., Johlin, E. C., Hoke, E. T., Akey, A. J., Nguyen, W. H., McGehee, M. D., & Buonassisi, T. (2015). A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Applied Physics Letters, 106, 121105.

    Article  Google Scholar 

  30. Bailie, C. D., Christoforo, M. G., Mailoa, J. P., Bowring, A. R., Unger, E. L., Nguyen, W. H., Burschka, J., Pellet, N., Lee, J. Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleo, A., & McGehee, M. D. (2015). Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy & Environmental Science, 8, 956–963.

    Article  CAS  Google Scholar 

  31. Liu, P., Bai, L., Yang, J., Gu, H., Zhong, Q., Xie, Z., & Gu, Z. (2019). Self-assembled colloidal arrays for structural color. Nanoscale Advances, 1, 1672–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sukharevska, N., Bederak, D., Goossens, V. M., Momand, J., Duim, H., Dirin, D. N., Kovalenko, M. V., Kooi, B. J., & Loi, M. A. (2021). Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Applied Materials & Interfaces, 13, 5195–5207.

    Article  CAS  Google Scholar 

  33. Kim, G.-W., Shindea, D. V., & Park, T. (2015). Thickness of the hole transport layer in perovskite solar cells: Performance versus reproducibility. RSC Advances, 5, 99356–99360.

    Article  CAS  Google Scholar 

  34. Crisp, R. W., Kroupa, D. M., Marshall, A. R., Miller, E. M., Zhang, J., Beard, M. C., & Luther, J. M. (2015). Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells. Science and Reports, 5, 9945.

    Article  CAS  Google Scholar 

  35. Jeong, K. S., Tang, J., Liu, H., Kim, J., Schaefer, A. W., Kemp, K., Levina, L., Wang, X., Hoogland, S., Debnath, R., Brzozowski, L., Sargent, E. H., & Asbury, J. B. (2012). Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 6, 89–99.

    Article  CAS  PubMed  Google Scholar 

  36. Lu, K., Wang, Y., Liu, Z., Han, L., Shi, G., Fang, H., Chen, J., Ye, X., Chen, S., Yang, F., Shulga, A. G., Wu, T., Gu, M., Zhou, S., Fan, J., Loi, M. A., & Ma, W. (2018). High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via “solvent-curing.” Advanced Materials, 30, 1707572.

    Article  Google Scholar 

  37. Kim, B.-S., Hong, J., Hou, B., Cho, Y., Sohn, J. I., Cha, S., & Kim, J. M. (2016). Inorganic-ligand exchanging time effect in PbS quantum dot solar cell. Applied Physics Letters, 109, 063901.

    Article  Google Scholar 

  38. Tang, J. A., & Sargent, E. H. (2011). Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Advanced Materials, 23, 12–29.

    Article  CAS  PubMed  Google Scholar 

  39. Luther, J. M., Law, M., Song, Q., Perkins, C. L., Beard, M. C., & Nozik, A. J. (2008). Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano, 2, 271–280.

    Article  CAS  PubMed  Google Scholar 

  40. Park, M., Hong, S. C., Jang, Y., Byeon, J., Jang, J., Han, M., Kim, U., Jeong, K., Choi, M., & Lee, G. (2023). Scalable production of high performance flexible perovskite solar cells via film-growth-megasonic-spray-coating system. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 1223–1234.

    Article  Google Scholar 

  41. Singh, R., & Parashar, M. (2020). Origin of hysteresis in perovskite solar cells. In J. Ren & Z. Kan (Eds.), Soft-matter thin film solar cells (pp. 1–42). AIP Publishing LLC.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported the Korea Institute of Machinery and Materials (KIMM) NK242C and NK243H project and by the international collaborative R&D program (No. 0000895) funded by the Korea Institute for Advancement of Technology (KIAT).

Author information

Authors and Affiliations

Authors

Contributions

This work was financially supported the Korea.

Corresponding authors

Correspondence to Hyung Cheoul Shim or Sohee Jeong.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1698 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, H.C., Song, J.H., Kim, A. et al. Dry Transfer Printed Hole Transport Layer for Hysteresis-Free Colloidal Quantum Dot Solar Cells. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-023-00594-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-023-00594-5

Keywords

Navigation