Skip to main content

Real-Time Fault Identification System for a Retrofitted Ultra-Precision CNC Machine from Equipment's Power Consumption Data: A Case Study of an Implementation

Abstract

Ability to detect faults in manufacturing machines have become crucial in the era of Smart Manufacturing to enable cost savings from erratic downtimes, in an effort towards Green Manufacturing. The power consumption data provides myriad of information that would facilitate condition monitoring of manufacturing machines. In this work, we retrofit an ultra-precision CNC machine using an inexpensive power meter. The data collected from the power meter were streamed in real-time to Amazon Web Services (AWS) servers using industry standard Message Query Telemetry Transport (MQTT) protocol. The error identification study was carried out in two-folds, we first identify if the error has occurred followed by classifying the type of controller error. The study also develops anomaly detection models to identify normal operating condition of the machine from the anomalous error states. Anomaly detection was particularly favorable for manufacturing machines as it requires data only from the normal operating conditions of the machine. The developed models performed with macro F1-Score of 0.9971 ± 0.0012 and 0.9974 ± 0.0018 for binary and multiclass classification respectively. The anomaly detection models were able to identify the anomalous data instances with an average accuracy of 95%. A feature importance study was then carried out to identify the most valuable feature for error identification. Finally, the trained models were containerized and hosted at AWS. The overarching goal of this project was to develop a complete inexpensive ML pipeline that would enable industries to detect operation anomalies in manufacturing machines just from the energy consumption data of the machine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data availability

The complete codebase used this work has been published at https://github.com/vigneshuw/machine_fault_identification.git for further development.

Abbreviations

\({D}_{M}\left(x\right)\) :

Mahalanobis distance of the data instance \(x\)

\({K}_{h}(x-{x}_{i})\) :

Kernel function of choice for Kernel Density Estimation (KDE)

\({f}_{h}\left(x\right)\) :

Density estimate at a point \(x\)

\(h\) :

Bandwidth parameter, controls the smoothness of the estimated density distribution

References

  1. Duflou, J. R., et al. (2012). Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals, 61(2), 587–609. https://doi.org/10.1016/j.cirp.2012.05.002

    Article  Google Scholar 

  2. Lee, J.-Y., et al. (2016). A simplified machine-tool power-consumption measurement procedure and methodology for estimating total energy consumption. Journal of Manufacturing Science and Engineering, 138(5), 051004. https://doi.org/10.1115/1.4031713

    Article  Google Scholar 

  3. Behrendt, T., Zein, A., & Min, S. (2012). Development of an energy consumption monitoring procedure for machine tools. CIRP Annals, 61(1), 43–46. https://doi.org/10.1016/j.cirp.2012.03.103

    Article  Google Scholar 

  4. Hu, S., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140. https://doi.org/10.1016/j.jclepro.2012.01.013

    Article  Google Scholar 

  5. Vijayaraghavan, A., & Dornfeld, D. (2010). Automated energy monitoring of machine tools. CIRP Annals, 59(1), 21–24. https://doi.org/10.1016/j.cirp.2010.03.042

    Article  Google Scholar 

  6. Gao, R. X., Wang, L., Helu, M., & Teti, R. (2020). Big data analytics for smart factories of the future. CIRP Annals, 69(2), 668–692. https://doi.org/10.1016/j.cirp.2020.05.002

    Article  Google Scholar 

  7. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198

    Article  Google Scholar 

  8. Lessmeier, C., Kimotho, J. K., Zimmer, D., & Sextro, W. (2016). Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. PHM Society European Conference. https://doi.org/10.36001/phme.2016.v3i1.1577

    Article  Google Scholar 

  9. Rai, R., Tiwari, M. K., Ivanov, D., & Dolgui, A. (2021). Machine learning in manufacturing and industry 4.0 applications. International Journal of Production Research, 59(16), 4773–4778. https://doi.org/10.1080/00207543.2021.1956675

    Article  Google Scholar 

  10. Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. (2020). Machine learning and deep learning algorithms for bearing fault diagnostics: A comprehensive review. IEEE Access, 8, 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859

    Article  Google Scholar 

  11. Fujishima, M., Ohno, K., Nishikawa, S., Nishimura, K., Sakamoto, M., & Kawai, K. (2016). Study of sensing technologies for machine tools. CIRP Journal of Manufacturing Science and Technology, 14, 71–75. https://doi.org/10.1016/j.cirpj.2016.05.005

    Article  Google Scholar 

  12. Fujishima, M., Mori, M., Nishimura, K., Takayama, M., & Kato, Y. (2017). Development of sensing interface for preventive maintenance of machine tools. Procedia CIRP, 61, 796–799. https://doi.org/10.1016/j.procir.2016.11.206

    Article  Google Scholar 

  13. Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019). A cyber-physical machine tools platform using OPC UA and MTConnect. Journal of Manufacturing Systems, 51, 61–74. https://doi.org/10.1016/j.jmsy.2019.04.006

    Article  Google Scholar 

  14. He, Y., Wu, P., Wang, Y., Tao, F., & Hon, B. K. K. (2020). An OPC UA based framework for predicting energy consumption of machine tools. Procedia CIRP, 90, 568–572. https://doi.org/10.1016/j.procir.2020.02.133

    Article  Google Scholar 

  15. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237. https://doi.org/10.1016/j.ymssp.2018.05.050

    Article  Google Scholar 

  16. Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144–156. https://doi.org/10.1016/j.jmsy.2018.01.003

    Article  Google Scholar 

  17. Yun, H., Kim, H., Kim, E., & Jun, M. B. G. (2020). Development of internal sound sensor using stethoscope and its applications for machine monitoring. Procedia Manufacturing, 48, 1072–1078. https://doi.org/10.1016/j.promfg.2020.05.147

    Article  Google Scholar 

  18. Kim, J., Lee, H., Jeong, S., & Ahn, S.-H. (2021). Sound-based remote real-time multi-device operational monitoring system using a Convolutional Neural Network (CNN). Journal of Manufacturing Systems, 58, 431–441. https://doi.org/10.1016/j.jmsy.2020.12.020

    Article  Google Scholar 

  19. Hunkeler, U., Truong, H. L., & Stanford-Clark, A. (2008). MQTT-S: A publish/subscribe protocol for wireless sensor networks. International Conference on Communication Systems Software and Middleware and Workshops. https://doi.org/10.1109/COMSWA.2008.4554519

    Article  Google Scholar 

  20. Loh, W. (2011). Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 1(1), 14–23. https://doi.org/10.1002/widm.8

    Article  Google Scholar 

  21. Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

    MATH  Google Scholar 

  22. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  23. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/BF00058655

    Article  MATH  Google Scholar 

  24. Hastie, T., Tibshirani, R., & Friedman, J. (2009). Random forests. The elements of statistical learning. New York: Springer. https://doi.org/10.1007/978-0-387-84858-7_15

    Chapter  MATH  Google Scholar 

  25. Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. Eighth IEEE International Conference on Data Mining. https://doi.org/10.1109/ICDM.2008.17

    Article  Google Scholar 

  26. Yang, H., Kumara, S., Bukkapatnam, S. T. S., & Tsung, F. (2019). The internet of things for smart manufacturing: A review. IISE Transactions, 51(11), 1190–1216. https://doi.org/10.1080/24725854.2018.1555383

    Article  Google Scholar 

  27. Hsieh, R.-J., Chou, J., & Ho, C.-H. (2019). Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing. IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA). https://doi.org/10.1109/SOCA.2019.00021

    Article  Google Scholar 

  28. Li, C., Zhang, S., Qin, Y., & Estupinan, E. (2020). A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing, 407, 121–135. https://doi.org/10.1016/j.neucom.2020.04.045

    Article  Google Scholar 

  29. Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.

  30. Xu, Z., Selvaraj, V., & Min, S. (2022). State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-022-02030-y

    Article  Google Scholar 

  31. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neural networks: A review. Neural Networks, 113, 54–71. https://doi.org/10.1016/j.neunet.2019.01.012

    Article  Google Scholar 

  32. Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221–232. https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  33. Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002

    Article  Google Scholar 

  34. Selvaraj, V., Xu, Z., & Min, S. (2022). Intelligent operation monitoring of an ultra-precision CNC machine tool using energy data. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-022-00449-5

    Article  Google Scholar 

Download references

Acknowledgements

The material is based on the work supported by the Wisconsin Alumni Research Foundation (WARF, MSN237362). Authors gracefully acknowledge the donation of the ROBONANO α-0iB to the University of Wisconsin Madison by FANUC Corporation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangkee Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented at PRESM2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, V., Min, S. Real-Time Fault Identification System for a Retrofitted Ultra-Precision CNC Machine from Equipment's Power Consumption Data: A Case Study of an Implementation. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 925–941 (2023). https://doi.org/10.1007/s40684-022-00497-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00497-x

Keywords