Skip to main content
Log in

Modeling and Optimization Method of Laser Cladding Based on GA-ACO-RFR and GNSGA-II

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Laser cladding is an environmentally friendly and reliable surface modification technology. The quality characteristics of the coating are directly affected by the process parameters of laser cladding. The reasonable selection of process parameters is essential to obtain high-quality coating. In this study, the single-track 15-5PH alloy coating was fabricated on the surface of 12Cr13 stainless steel. In view of the hybrid Genetic Algorithm and Ant Colony Optimization (GA-ACO) can effectively improve the prediction ability and robustness of Random Forest Regression (RFR), a prediction method of cladding layer quality characteristics based on GA-ACO-RFR was proposed. The fast non-dominated ranking genetic algorithm with elite strategy by introducing the Gaussian distribution crossover operator (GNSGA-II) was used to optimize the process parameters of laser cladding. The results showed that the multi-objective optimization method of laser cladding process parameters proposed in this paper can obtain high-quality laser cladding coating. This work demonstrated the potential of the proposed method in laser cladding process prediction and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhu, L., Xue, P., Lan, Q., Meng, G., Ren, Y., Yang, Z., Xu, P., & Liu, Z. (2021). Recent research and development status of laser cladding: A review. Optics & Laser Technology, 138, 106915.

    Article  Google Scholar 

  2. Satyavathi Yedida, V. V., & Vasudev, H. (2022). A review on the development of thermal barrier coatings by using thermal spray techniques. Materials Today: Proceedings, 50, 1458–1464.

    Google Scholar 

  3. Yu, X., Hou, Y., Ren, X., Sun, C., & Wang, M. (2022). Research progress on the removal, recovery and direct high-value materialization of valuable metal elements in electroplating/electroless plating waste solution. Journal of Water Process Engineering, 46, 102577.

    Article  Google Scholar 

  4. Scheuer, C., Ristiano, J., Cardoso, R. P., & Brunatto, S. F. (2021). Sequential low-temperature plasma-assisted thermochemical treatments of the AISI 420 martensitic stainless steel. Surface and Coatings Technology, 421, 127459.

    Article  Google Scholar 

  5. Yao, X. X., Ge, P., Li, J. Y., Wang, Y. F., Li, T., Liu, W. W., & Zhang, Z. (2020). Controlling the solidification process parameters of direct energy deposition additive manufacturing considering laser and powder properties. Computational Materials Science, 182, 109788.

    Article  Google Scholar 

  6. Tebaay, L. M., Hahn, M., & Tekkaya, A. E. (2020). Distortion and dilution behavior for laser metal deposition onto thin sheet metals. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 625–634.

    Article  Google Scholar 

  7. Guo, C., He, S., Yue, H., Li, Q., & Hao, G. (2021). Prediction modelling and process optimization for forming multi-layer cladding structures with laser directed energy deposition. Optics & Laser Technology, 134, 106607.

    Article  Google Scholar 

  8. Gao, M., Li, L., Wang, Q., Ma, Z., Li, X., & Liu, Z. (2022). Integration of additive manufacturing in casting: advances, challenges, and prospects. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 305–322.

    Article  Google Scholar 

  9. Du, Y., Zhou, Z., He, G., & Xu, L. (2022). Multi-parameter optimization of laser cladding 15–5PH using TOPSIS-GRA based on combined weighting method. Journal of Materials Engineering and Performance, 31, 1934–1948.

    Article  Google Scholar 

  10. Ma, M., Xiong, W., Lian, Y., Han, D., Zhao, C., & Zhang, J. (2020). Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm. Surface and Coatings Technology, 381, 125129.

    Article  Google Scholar 

  11. Meng, G., Zhu, L., Zhang, J., Yang, Z., & Xue, P. (2021). Statistical analysis and multi-objective process optimization of laser cladding TiC-Inconel718 composite coating. Optik, 240, 166828.

    Article  Google Scholar 

  12. Chen, T., Wu, W., Li, W., & Liu, D. (2019). Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model. Optics & Laser Technology, 116, 345–355.

    Article  Google Scholar 

  13. Wu, D., Hu, M., Huang, Y., Zhang, P., & Yu, Z. (2021). In situ monitoring and penetration prediction of plasma arc welding based on welder intelligence-enhanced deep random forest fusion. Journal of Manufacturing Processes, 66, 153–165.

    Article  Google Scholar 

  14. Song, C., Liu, L., Yang, Y., & Weng, C. (2020). Prediction on geometrical characteristics of laser energy deposition based on regression equation and neural network. IFAC-PapersOnLine, 53, 89–96.

    Article  Google Scholar 

  15. Pant, P., & Chatterjee, D. (2020). Prediction of clad characteristics using ANN and combined PSO-ANN algorithms in laser metal deposition process. Surfaces and Interfaces, 21, 100699.

    Article  Google Scholar 

  16. Ilanlou, M., Shoja Razavi, R., Nourollahi, A., Hosseini, S., & Haghighat, S. (2022). Prediction of the geometric characteristics of the laser cladding of Inconel 718 on the Inconel 738 substrate via genetic algorithm and linear regression. Optics & Laser Technology, 156, 108507.

    Article  Google Scholar 

  17. Saini, J., Dutta, M., & Marques, G. (2022). A novel application of fuzzy inference system optimized with particle swarm optimization and genetic algorithm for PM10 prediction. Soft Computing, 26, 9573–9586.

    Article  Google Scholar 

  18. Bakhtiyari, A. N., Wang, Z., Wang, L., & Zheng, H. (2021). A review on applications of artificial intelligence in modeling and optimization of laser beam machining. Optics & Laser Technology, 135, 106721.

    Article  Google Scholar 

  19. Mohammed, S., Zhang, Z., & Kovacevic, R. (2020). Optimization of processing parameters in fiber laser cladding. The International Journal of Advanced Manufacturing Technology, 111, 2553–2568.

    Article  Google Scholar 

  20. Chakraborty, S. S., & Dutta, S. (2019). Estimation of dilution in laser cladding based on energy balance approach using regression analysis. Sādhanā, 44, 150.

    Article  Google Scholar 

  21. Feng, Y., Pang, X., Feng, K., Feng, Y., & Li, Z. (2022). A method for evaluating the crack resistance and predicting the preheating temperature of high hardness coating prepared by laser cladding. Surface and Coatings Technology, 432, 128076.

    Article  Google Scholar 

  22. Chang, C., Wu, K., Han, C., Tsai, T., Liu, S., & Lin, J. (2022). Establishment of the model widely valid for the melting and vaporization zones in selective laser melting printings via experimental verifications. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 143–162.

    Article  Google Scholar 

  23. Murat, F., Kaymaz, İ, Şensoy, A. T., & Korkmaz, İH. (2022). Determining the optimum process parameters of selective laser melting via particle swarm optimization based on the response surface method. Metals and Materials International. https://doi.org/10.1007/s12540-022-01205-9

    Article  Google Scholar 

  24. Li, C., Huang, J., Wang, K., Chen, Z., & Liu, Q. (2019). Optimization of processing parameters of laser skin welding in vitro combining the response surface methodology with NSGA- II. Infrared Physics & Technology, 103, 103067.

    Article  Google Scholar 

  25. Peng, S., Li, T., Zhao, J., Lv, S., Tan, G. Z., Dong, M., & Zhang, H. (2019). Towards energy and material efficient laser cladding process: Modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II. Journal of Cleaner Production, 227, 58–69.

    Article  Google Scholar 

  26. Jiang, X., Tian, Z., Liu, W., Tian, G., Gao, Y., Xing, F., Suo, Y., & Song, B. (2022). An energy-efficient method of laser remanufacturing process. Sustainable Energy Technologies and Assessments, 52, 102201.

    Article  Google Scholar 

  27. Liu, Y., Shen, W., Man, Y., Liu, Z., & Seferlis, P. (2019). Optimal scheduling ratio of recycling waste paper with NSGAII based on deinked-pulp properties prediction. Computers & Industrial Engineering, 132, 74–83.

    Article  Google Scholar 

  28. García Moreno, A. I., Alvarado Orozco, J. M., IbarraMedina, J., & Martínez Franco, E. (2021). Ex-situ porosity classification in metallic components by laser metal deposition: A machine learning-based approach. Journal of Manufacturing Processes, 62, 523–534.

    Article  Google Scholar 

  29. Nemati, S., Basiri, M. E., Ghasem-Aghaee, N., & Aghdam, M. H. (2009). A novel ACO–GA hybrid algorithm for feature selection in protein function prediction. Expert Systems with Applications, 36, 12086–12094.

    Article  Google Scholar 

  30. Anand, R. S., Jawahar, C. P., Solomon, A. B., & David, S. (2021). Prediction of Al2O3/R134a nanorefrigerant based modified thermosyphon performance using random forest algorithm. Materials Today: Proceedings, 47, 6585–6589.

    Google Scholar 

  31. Yang, N., Song, Z., Hofmann, H., & Sun, J. (2022). Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest. Journal of Energy Storage, 48, 103857.

    Article  Google Scholar 

  32. Nunes Miranda, E., Henrique Groenner Barbosa, B., Henrique Godinho Silva, S., Augusto Ussi Monti, C., Yue Phin Tng, D., & Rezende Gomide, L. (2022). Variable selection for estimating individual tree height using genetic algorithm and random forest. Forest Ecology and Management, 504, 119828.

    Article  Google Scholar 

  33. Li, S., Li, S., Liu, D., Zou, R., & Yang, Z. (2022). Hardness prediction of high entropy alloys with machine learning and material descriptors selection by improved genetic algorithm. Computational Materials Science, 205, 111185.

    Article  Google Scholar 

  34. Ma, Y., Mao, Z., Wang, T., Qin, J., Ding, W., & Meng, X. (2020). Obstacle avoidance path planning of unmanned submarine vehicle in ocean current environment based on improved firework-ant colony algorithm. Computers & Electrical Engineering, 87, 106773.

    Article  Google Scholar 

  35. Zhang, J., Shi, S., Jiang, W., Shi, T., & Ji, S. (2019). Simulation analysis of temperature field and process optimization of laser cladding based on internal wire feeding of three beams. Chinese Journal of Lasers, 46, 122–129.

    Google Scholar 

  36. Wu, S., Liu, Z., Huang, X., Wu, Y., & Gong, Y. (2021). Process parameter optimization and EBSD analysis of Ni60A-25% WC laser cladding. International Journal of Refractory Metals and Hard Materials, 101, 105675.

    Article  Google Scholar 

  37. Zhou, Z., Qiu, F., Zheng, F., & Ye, M. (2022). Neural network joint capacity-power control strategy based on NSGAII-BP for interference suppression in LEO satellite uplinks. Computers and Electrical Engineering, 102, 108093.

    Article  Google Scholar 

  38. Tan, W., Yuan, X., Yang, Y., & Wu, L. (2022). Multi-objective casting production scheduling problem by a neighborhood structure enhanced discrete NSGA-II: An application from real-world workshop. Soft Computing, 26, 8911–8928.

    Article  Google Scholar 

  39. Zhang, M., Luo, W., & Wang, X. (2009). A normal distribution crossover for ε-MOEA. Journal of Software, 20, 305–314.

    Article  MathSciNet  MATH  Google Scholar 

  40. Deliktaş, D. (2022). Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times. Flexible Services and Manufacturing Journal, 34, 748–784.

    Article  Google Scholar 

  41. de Melo, S. A., Pereira, R. B. D., da Silva Reis, A. F., Lauro, C. H., & Brandão, L. C. (2022). Multi-objective evolutionary optimization of unsupervised latent variables of turning process. Applied Soft Computing, 120, 108713.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Innovative Research Group of Universities in Chongqing (Grant No. CXQT21024), the “Lump-sum System” Project of Chongqing Talent Plan (cstc2022ycjh-bgzxm0056), the Chongqing Talent Program (Grant No. CQYC20210302226), the Science and Technology Research Program of Chongqing Municipal Education Commission of China (Grant No. KJZD-K202000801), and the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 20JS020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Du.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Du, Y., Liang, Q. et al. Modeling and Optimization Method of Laser Cladding Based on GA-ACO-RFR and GNSGA-II. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1207–1222 (2023). https://doi.org/10.1007/s40684-022-00492-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00492-2

Keywords

Navigation