Skip to main content
Log in

Scalable Production of High Performance Flexible Perovskite Solar Cells via Film-Growth-Megasonic-Spray-Coating System

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Commercialization of flexible perovskite solar cells requires an effective scalable coating system that overcomes the inadequate wettability of conventional polymer-based flexible substrates. In this study, we have come up with a Film-Growth-Megasonic-Spray-Coating (FGMSC) method that continuously grows uniform perovskite film on large-area flexible substrates by using fine perovskite precursor droplets (< 10 μm). The film growth mechanisms of a perovskite layer (e.g. film coverage, roughness, and crystal grain size) according to the precursor droplet supply rate and the multiple spray was thoroughly investigated for manufacturing flexible perovskite solar mini-module. In complete automation that utilizes the two-dimensional transportation system, the FGMSC system has successfully fabricated a defect-free uniform perovskite layer on large-area flexible substrates with high reproducibility and flexibility by controlling perovskite film growth. The scalability of this system is proved through fabrication of a flexible perovskite solar mini-module with PCE of 16.10% from an active area of 35.1 cm2, which is the highest efficiency made by continuous spray coating systems. The encapsulated flexible mini-module retained 97% of its initial efficiency after 200 h under continuous 1-sun illumination. The results have suggested that f-PSCs can be effectively commercialized by using our FGMSC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8, 506–514. https://doi.org/10.1038/nphoton.2014.134

    Article  Google Scholar 

  2. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234–1237. https://doi.org/10.1126/science.aaa9272

    Article  Google Scholar 

  3. Yang, W. S., Park, B.-W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., & Seok, S. I. (2017). Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356, 1376–1379. https://doi.org/10.1126/science.aan2301

    Article  Google Scholar 

  4. Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T.-J., Yang, T. Y., Noh, J. H., & Seo, J. (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511–515. https://doi.org/10.1038/s41586-019-1036-3

    Article  Google Scholar 

  5. Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., & You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13, 460–466. https://doi.org/10.1038/s41566-019-0398-2

    Article  Google Scholar 

  6. NREL chart, accessed: July 2022, https://www.nrel.gov/pv/cell-efficiency.html

  7. Yoon, J., Sung, H., Lee, G., Cho, W., Ahn, N., Jung, H. S., & Choi, M. (2017). Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy & Environmental Science, 10, 337–345. https://doi.org/10.1039/C6EE02650H

    Article  Google Scholar 

  8. Feng, J., Zhu, X., Yang, Z., Zhang, X., Niu, J., Wang, Z., Zuo, S., Priya, S., Liu, S., & Yang, D. (2018). Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Advanced Materials, 30, 1801418. https://doi.org/10.1002/adma.201801418

    Article  Google Scholar 

  9. Wu, C., Wang, D., Zhang, Y., Gu, F., Liu, G., Zhu, N., Luo, W., Han, D., Guo, X., Qu, B., Wang, S., Bian, Z., Chen, Z., & Xiao, L. (2019). FAPbI3 flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process. Advanced Functional Materials, 29, 1902974. https://doi.org/10.1002/adfm.201902974

    Article  Google Scholar 

  10. Lee, G., Kim, M., Choi, Y. W., Ahn, N., Jang, J., Yoon, J., Kim, S. M., Lee, J.-G., Kang, D., Jung, H. S., & Choi, M. (2019). Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source. Energy & Environmental Science, 12, 3182–3191. https://doi.org/10.1039/C9EE01944H

    Article  Google Scholar 

  11. Jung, H. S., Han, G. S., Park, N.-G., & Ko, M. J. (2019). Flexible perovskite solar cells. Joule, 3, 1850–1880. https://doi.org/10.1016/j.joule.2019.07.023

    Article  Google Scholar 

  12. Yang, L., Xiong, Q., Li, Y., Gao, P., Xu, B., Lin, H., Li, X., & Miyasaka, T. (2021). Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. Journal of Materials Chemistry A, 9, 1574–1582. https://doi.org/10.1039/D0TA10717D

    Article  Google Scholar 

  13. Yang, Z., Chueh, C.-C., Zuo, F., Kim, J. H., Liang, P.-W., & Jen, A.K.-Y. (2015). High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Advanced Energy Materials, 5, 1500328. https://doi.org/10.1002/aenm.201500328

    Article  Google Scholar 

  14. Galagan, Y., Giacomo, F. D., Gorter, H., Kirchner, G., de Vries, I., Andriessen, R., & Groen, P. (2018). Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Advanced Energy Materials, 8, 1801935. https://doi.org/10.1002/aenm.201801935

    Article  Google Scholar 

  15. Kim, Y. Y., Yang, T.-Y., Suhonen, R., Valimaki, M., Maaninen, T., Kemppainen, A., Jeon, N. J., & Seo, J. (2019). Gravure-printed flexible perovskite solar cells: Toward roll-to-roll manufacturing. Advanced Science, 6, 1802094. https://doi.org/10.1002/advs.201802094

    Article  Google Scholar 

  16. Lee, J.-W., Lee, D.-K., Jeong, D.-N., & Park, N.-G. (2018). Control of crystal growth toward scalable fabrication of perovskite solar cells. Advanced Functional Materials, 29, 1807047. https://doi.org/10.1002/adfm.201807047

    Article  Google Scholar 

  17. He, M., Li, B., Cui, X., Jiang, B., He, Y., Chen, Y., O’Neil, D., Szymanski, P., El-Sayed, M. A., Huang, J., & Lin, Z. (2017). Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 8, 16045. https://doi.org/10.1038/ncomms16045

    Article  Google Scholar 

  18. Wu, W.-Q., Yang, Z., Rudd, P. N., Shao, Y., Dai, X., Wei, H., Zhao, J., Fang, Y., Wang, Q., Liu, Y., Deng, Y., Xiao, X., Feng, Y., & Huang, J. (2019). Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Science Advances, 5, eaav8925. https://doi.org/10.1126/sciadv.aav8925

    Article  Google Scholar 

  19. Kim, H.-J., Kim, H.-S., & Park, N.-G. (2021). Progress of perovskite solar modules. Advanced Energy and Sustainability Research, 2, 2000051. https://doi.org/10.1002/aesr.202000051

    Article  Google Scholar 

  20. Lee, D.-K., Lim, K.-S., Lee, J.-W., & Park, N.-G. (2021). Scalable perovskite coating via anti-solvent-free Lewis acid-base adduct engineering for efficient perovskite solar modules. Journal of Materials Chemistry A, 9, 3018–3028. https://doi.org/10.1039/D0TA10366G

    Article  Google Scholar 

  21. Yoo, J. W., Jang, J., Kim, U., Lee, Y., Ji, S.-G., Noh, E., Hong, S., Choi, M., & Seok, S. I. (2021). Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule, 5, 2420–2436. https://doi.org/10.1016/j.joule.2021.08.005

    Article  Google Scholar 

  22. Schmidt, T. M., Larsen-Olsen, T. T., Carle, J. E., Angmo, D., & Krebs, F. C. (2015). Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Advanced Energy Materials, 5, 1500569. https://doi.org/10.1002/aenm.201500569

    Article  Google Scholar 

  23. Dou, B., Whitaker, J. B., Bruening, K., Moore, D. T., Wheeler, L. M., Ryter, J., Breslin, N. J., Berry, J. J., Garner, S. M., Barnes, F. S., Shaheen, S. E., Tassone, C. J., Zhu, K., & van Hest, M. F. A. M. (2018). Roll-to-roll printing of perovskite solar cells. ACS Energy Letters, 3, 2558–2565. https://doi.org/10.1021/acsenergylett.8b01556

    Article  Google Scholar 

  24. Kim, J.-E., Kim, S.-S., Zuo, C., Gao, M., Vak, D., & Kim, D.-Y. (2019). Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition. Advanced Functional Materials, 29, 1809194. https://doi.org/10.1002/adfm.201809194

    Article  Google Scholar 

  25. Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., & Huang, J. (2018). Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3, 560–566. https://doi.org/10.1038/s41560-018-0153-9

    Article  Google Scholar 

  26. Dai, X., Deng, Y., Brackle, C. H. V., & Huang, J. (2019). Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels. International Journal of Extreme Manufacturing, 1, 022004. https://doi.org/10.1088/2631-7990/ab263e

    Article  Google Scholar 

  27. Remeika, M., Ono, L. K., Maeda, M., Hu, Z., & Qi, Y. (2018). High-throughput surface preparation for flexible slot die coated perovskite solar cells. Organic Electronics, 54, 72–79. https://doi.org/10.1016/j.orgel.2017.12.027

    Article  Google Scholar 

  28. Hong, S. C., Lee, G., Ha, K., Yoon, J., Ahn, N., Cho, W., Park, M., & Choi, M. (2017). Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system. ACS Applied Materials & Interfaces, 9, 7879–7884. https://doi.org/10.1021/acsami.6b15095

    Article  Google Scholar 

  29. Hong, S. C. (2020). Continuous fabrication of high performance perovskite solar cells via aerosol technology. PhD thesis, Seoul National University.

  30. Park, M., Cho, W., Lee, G., Hong, S. C., Kim, M., Yoon, J., Ahn, N., & Choi, M. (2019). Highly reproducible large-area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3. Small (Weinheim an der Bergstrasse, Germany), 15, 1804005. https://doi.org/10.1002/smll.201804005

    Article  Google Scholar 

  31. Bag, S., Deneault, J. R., & Durstock, M. F. (2017). Aerosol-jet-assisted thin-film growth of CH3NH3PbI3 perovskites—a means to achieve high quality, defect-free films for efficient solar cells. Advanced Energy Materials, 7, 1701151. https://doi.org/10.1002/aenm.201701151

    Article  Google Scholar 

  32. Heo, J. H., Lee, M. H., Jang, M. H., & Im, S. H. (2016). Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A, 4, 17636–17642. https://doi.org/10.1039/C6TA06718B

    Article  Google Scholar 

  33. Lee, D. S., Ki, M. J., Lee, H. J., Park, J. K., Hong, S. Y., Kim, B. W., Heo, J. H., & Im, S. H. (2022). Fully scalable and stable CsPbI2Br solar cells realized by an all-spray-coating process. ACS Applied Materials & Interfaces, 14, 7926–7935. https://doi.org/10.1021/acsami.1c21644

    Article  Google Scholar 

  34. Bishop, J. E., Read, C. D., Smith, J. A., Routledge, T. J., & Lidzey, D. G. (2020). Fully spray-coated triple-cation perovskite solar cells. Scientific Reports, 10, 6610. https://doi.org/10.1038/s41598-020-63674-5

    Article  Google Scholar 

  35. Bishop, J. E., Smith, J. A., & Lidzey, D. G. (2020). Development of spray-coated perovskite solar cells. ACS Applied Materials & Interfaces, 12, 48237–48245. https://doi.org/10.1021/acsami.0c14540

    Article  Google Scholar 

  36. Han, S., Kim, H., Lee, S., & Kim, C. (2018). Efficient planar-heterojunction perovskite solar cells fabricated by high-throughput sheath-gas-assisted electrospray. ACS Applied Materials & Interfaces, 10, 7281–7288. https://doi.org/10.1021/acsami.7b18643

    Article  Google Scholar 

  37. Jiang, Y., Wu, C., Li, L., Wang, K., Tao, Z., Gao, F., Cheng, W., Cheng, J., Zhao, X.-Y., Priya, S., & Deng, W. (2018). All electrospray printed perovskite solar cells. Nano Energy, 53, 440–448. https://doi.org/10.1016/j.nanoen.2018.08.062

    Article  Google Scholar 

  38. Wang, W.-N., Purwanto, A., Lenggoro, I. W., Okuyama, K., Chang, H., & Jang, H. D. (2008). Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Industrial & Engineering Chemistry Research, 47, 1650–1659. https://doi.org/10.1021/ie070821d

    Article  Google Scholar 

  39. Barrows, A. T., Pearson, A. J., Kwak, C. K., Dunbar, A. D. F., Buckley, A. R., & Lidzey, D. G. (2014). Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 7, 2944. https://doi.org/10.1039/C4EE01546K

    Article  Google Scholar 

  40. Huang, H., Shi, J., Zhu, L., Li, D., Luo, Y., & Meng, Q. (2016). Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy, 27, 352–358. https://doi.org/10.1016/j.nanoen.2016.07.026

    Article  Google Scholar 

  41. Ulicna, S., Dou, B., Kim, D. H., Zhu, K., Walls, J. M., Bowers, J. W., & van Hest, M. F. A. M. (2018). Scalable deposition of high-efficiency perovskite solar cells by spray-coating. ACS Applied Energy Materials, 1, 1853–1857. https://doi.org/10.1021/acsaem.8b00328

    Article  Google Scholar 

  42. Tsai, S. C., Song, Y. L., Tsai, C. S., Yang, C. C., Chiu, W. Y., & Lin, H. M. (2004). Ultrasonic spray pyrolysis for nanoparticles synthesis. Journal of Materials Science, 39, 3647–3657. https://doi.org/10.1023/B:JMSC.0000030718.76690.11

    Article  Google Scholar 

  43. Liang, Z., Zhang, S., Xu, X., Wang, N., Wang, J., Wang, X., Bi, Z., Xu, G., Yuan, N., & Ding, J. (2015). A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Advances, 5, 60562–60569. https://doi.org/10.1039/C5RA09110A

    Article  Google Scholar 

  44. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., Hong, Z., You, J., Liu, Y., & Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345, 542–546. https://doi.org/10.1126/science.1254050

    Article  Google Scholar 

  45. Park, B., Philippe, B., Jain, S. M., Zhang, X., Edvinsson, T., Rensmo, H., Zietz, B., & Boschloo, G. (2015). Chemical engineering of methylammonium lead iodide/bromide perovskites: Tuning of opto-electronic properties and photovoltaic performance. Journal of Materials Chemistry A, 3, 21760–21771. https://doi.org/10.1039/C5TA05470B

    Article  Google Scholar 

  46. Kim, M., Kim, B. J., Son, D.-Y., Park, N.-G., Jung, H. S., & Choi, M. (2016). Observation of enhanced hole extraction in Br concentration gradient perovskite materials. Nano Letters, 16, 5756–5763. https://doi.org/10.1021/acs.nanolett.6b02473

    Article  Google Scholar 

  47. Zheng, L., Ma, Y., Chu, S., Wang, S., Qu, B., Xiao, L., Chen, Z., Gong, Q., Wu, Z., & Hou, X. (2014). Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. Nanoscale, 6, 8171–8176. https://doi.org/10.1039/C4NR01141D

    Article  Google Scholar 

  48. Wozny, S., Yang, M., Nardes, A. M., Mercado, C. C., Ferrere, S., Reese, M. O., Zhou, W., & Zhu, K. (2015). Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells. Chemistry of Materials, 27, 4814–4820. https://doi.org/10.1021/acs.chemmater.5b01691

    Article  Google Scholar 

  49. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., & Gratzel, M. (2016). Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9, 1989–1997. https://doi.org/10.1039/C5EE03874J

    Article  Google Scholar 

  50. Sung, H., Ahn, N., Jang, M. S., Lee, J.-K., Yoon, H., Park, N.-G., & Choi, M. (2016). Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Advanced Energy Materials, 6, 1501873. https://doi.org/10.1002/aenm.201501873

    Article  Google Scholar 

  51. Murugadoss, G., Thangamuthu, R., Vijayaraghavan, S., Kanda, H., & Ito, S. (2017). Caesium −methyl ammonium mixed-cation lead iodide perovskite crystals: Analysis and application for perovskite solar cells. Electrochimica Acta, 257, 267–280. https://doi.org/10.1016/j.electacta.2017.10.092

    Article  Google Scholar 

  52. Gonzalez-Pedro, V., Juarez-Perez, E. J., Arsyad, W.-S., Barea, E. M., Fabregat-Santiago, F., Mora-Sero, I., & Bisquert, J. (2014). General working principles of CH3NH3PbX3 perovskite solar cells. Nano Letters, 14, 888–893. https://doi.org/10.1021/nl404252e

    Article  Google Scholar 

  53. Christians, J. A., Fung, R. C., & Kamat, P. V. (2014). An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 136, 758–764. https://doi.org/10.1021/ja411014k

    Article  Google Scholar 

  54. Tai, Q., You, P., Sang, H., Liu, Z., Hu, C., Chan, H. L., & Yan, F. (2016). Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nature Communications, 7, 11105. https://doi.org/10.1038/ncomms11105

    Article  Google Scholar 

  55. Kim, B. J., Kim, D. H., Lee, Y.-Y., Shin, H.-W., Han, G. S., Hong, J. S., Mahmood, K., Ahn, T. K., Joo, Y.-C., Hong, K. S., Park, N.-G., Lee, S., & Jung, H. S. (2015). Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy & Environmental Science, 8, 916–921. https://doi.org/10.1039/C4EE02441A

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Global Frontier R&D Program of the Center for Multiscale Energy Systems funded by the National Research Foundation under the Ministry of Education, Science and Technology, Korea (2012M3A6A7054855). This work was also supported by the Technology Innovation Program (20016588, Development of perovskite BIPV module by eco-friendly process) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansoo Choi or Gunhee Lee.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1601 KB)

Supplementary file2 (MP4 7706 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Hong, S.C., Jang, YW. et al. Scalable Production of High Performance Flexible Perovskite Solar Cells via Film-Growth-Megasonic-Spray-Coating System. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1223–1234 (2023). https://doi.org/10.1007/s40684-022-00485-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00485-1

Keywords

Navigation