Skip to main content
Log in

Conformal Three-Dimensional Platinum Coating Using Rotary-Type Atomic Layer Deposition for a Diesel Oxidation Catalyst Application

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

A novel rotary-type atomic layer deposition (ALD) process for coating platinum thin film on three-dimensional (3D) substrates is demonstrated. High uniformity and conformability of the platinum thin-film deposition on 3D substrates were confirmed, ensuring the controllability of the new ALD technique. The results for this technique surpassed those of the conventional wet method and ordinary atomic layer deposition, which both have a limited specific surface area. To demonstrate the application of this new technology, Pt nano-film coated γ-Al2O3 was produced using the rotary-type ALD and applied to diesel oxidation catalysts (DOCs). The produced DOCs showed high Pt content when the number of ALD cycles was increased, and thereby exhibited more complete combustion of gaseous pollutants, such as CO, C3H8, and NO, even at lower temperatures. Pt nano-film deposition by the rotary-type ALD process was first optimised on Si wafer substrates. The process was controlled by four parameters: processing temperature, number of ALD cycles, precursor pulse time, and reactant pulse time. Deposition of the Pt nano-film was mainly determined by the processing temperature and the number of ALD cycles. The average growth per cycle and density of the Pt nano-film were found to be 0.8 Å/cycle and 21.0 g/cm3, respectively. The same procedure and conditions were applied to 3D γ-Al2O3 powder substrates for DOCs, which demonstrated greater conversion performance compared with conventional Pt-used DOCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Eric, D., Wachsman, D., & Lee, K. T. (2011). Lowering the temperature of solid oxide fuel cells. Science, 334, 935–939. https://doi.org/10.1126/science.1204090

    Article  Google Scholar 

  2. Yuyan Shao, J., Liu, Y., Wang, A., & Lin, Y. (2009). Novel catalyst support materials for PEM fuel cells: current status and future prospects. Journal of Materials Chemistry, 19(1), 46–59. https://doi.org/10.1039/B808370C

    Article  Google Scholar 

  3. Yunhui Gong, D., Palacio, X., Song, R. L., Patel, X., Liang, X., Zhao, J. B., & Goodenough, H. K. (2013). Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Letters, 13(9), 4340–4345. https://doi.org/10.1021/nl402138w

    Article  Google Scholar 

  4. Brahim, C., Ringuedé, A., Cassir, M., Putkonen, M., & Niinistö, L. (2007). Electrical properties of thin yttria-stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications. Applied Surface Science, 253.8, 3962–3968. https://doi.org/10.1016/j.apsusc.2006.08.043

    Article  Google Scholar 

  5. Sambhaji, M., Pawar, J., Kim, A. I., Inamdar, H., Woo, Y., Jo, B. S., Pawar, S., Cho, H., & Kim, I. M. (2016). Multi-functional reactively-sputtered copper oxide electrodes for supercapacitor and electro-catalyst in direct methanol fuel cell applications. Scientific Reports, 6, 1–9. https://doi.org/10.1038/srep21310

    Article  Google Scholar 

  6. Anthony, S., Yu, R., Küngas, J. M., Vohs, & Gorte, R. J. (2013). Modification of SOFC cathodes by atomic layer deposition. Journal of the Electrochemical Society, 160, F1225. https://doi.org/10.1149/2.045311jes

    Article  Google Scholar 

  7. Seunghyeon Kye, H. J., Kim, D., Go, B. C., Yang, J. W., Shin, S., Lee, & An, J. (2021). Ultralow-loading ruthenium catalysts by plasma-enhanced atomic layer deposition for a solid oxide fuel cell. ACS Catalysis, 11(6), 3523–3529. https://doi.org/10.1021/acscatal.0c04526

    Article  Google Scholar 

  8. Kim, H. J., Kil, M. J., Lee, J., Yang, B. C., Go, D., Lim, Y., Kim, Y. B., & An, J. (2021). Ru/Samaria-doped ceria gradient cermet anode for direct-methane solid oxide fuel cell. Applied Surface Science, 538, 148105. https://doi.org/10.1016/j.apsusc.2020.148105

    Article  Google Scholar 

  9. Sofiane Boukhalfa, K., Evanoff, & Yushin, G. (2012). Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy & Environmental Science, 5, 6872–6879. https://doi.org/10.1039/c2ee21110f

    Article  Google Scholar 

  10. Cao Guan, X., Qian, X., Wang, Y., Cao, Q., Zhang, A., Li, A., & Wang, J. (2015). Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology, 26(9), 094001. https://doi.org/10.1088/0957-4484/26/9/094001

    Article  Google Scholar 

  11. Xiangbo Meng, X. Q., Yang, S., & Sun, X. (2012). Emerging applications of atomic layer deposition for lithium-ion battery studies. Advanced Materials, 24, 3589–3615. https://doi.org/10.1002/adma.201200397

    Article  Google Scholar 

  12. Jung, Y. S., Cavanagh, A. S., Riley, L. A., Kang, S. H., Dillon, A. C., & Groner, M. D. (2010). Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Advanced Materials, 22, 2172–2176. https://doi.org/10.1002/adma.200903951

    Article  Google Scholar 

  13. Zhao, M. Q., Liu, X. F., Zhang, Q., Tian, G. L., Huang, J. Q., Zhu, W., & Wei, F. (2012). Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano, 6, 10759–10769. https://doi.org/10.1021/nn304037d

    Article  Google Scholar 

  14. Fernando Dorado, A., de Lucas-Consuegra, P., & Vernoux, J. L. (2007). Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen. Applied Catalysis B: Environmental, 73, 242–50. https://doi.org/10.1016/j.apcatb.2006.12.001

    Article  Google Scholar 

  15. Javier, G. M., Susana, Q.-D., Noelia, G.-H., & Avelina, G.-G. (2017). Catalyzed particulate filter regeneration by platinum versus noble metal-free catalysts: from principles to real application. Topics in Catalysis, 60(1), 2–12. https://doi.org/10.1007/s11244-016-0730-8

    Article  Google Scholar 

  16. Qiuhong Zhou, K., Zhong, W., Fu, Q., Huang, Z., Wang, & Nie, B. (2015). Nanostructured platinum catalyst coating on diesel particulate filter with a low-cost electroless deposition approach. Chemical Engineering Journal, 270, 320–326. https://doi.org/10.1016/j.cej.2015.01.131

    Article  Google Scholar 

  17. Tseng, C. H., Chang, S. M., Hu, S. C., Chen, Y. C., Shiue, A., Li, Z., Huang, P. H., & Leggett, G. (2021). Platinum-supported aluminum oxide on activated carbon filter media for removal of formaldehyde in the indoor condition. International Journal of Environmental Science and Technology, 18(12), 3747–3760. https://doi.org/10.1007/s13762-021-03130-7

    Article  Google Scholar 

  18. Cuiting Yang, G., Miao, Y., Pi, Q., Xia, J., Wu, Z., Li, & Xia, J. (2019). Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chemical Engineering Journal, 370, 1128–1153. https://doi.org/10.1016/j.cej.2019.03.232

    Article  Google Scholar 

  19. Neil, P., Dasgupta, X., Meng, J. W., & Elam, A. B. (2015). Atomic layer deposition of metal sulfide materials. Accounts of Chemical Research, 48, 2341–348. https://doi.org/10.1021/ar500360d

    Article  Google Scholar 

  20. Guizhen Wang, Z., Gao, S., Tang, C., Chen, F., Duan, S., Zhao, S., Lin, Y., Feng, L., & Zhou, & Qin, Y. (2012). Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano, 6, 11009–11017. https://doi.org/10.1021/nn304630h

    Article  Google Scholar 

  21. Han, J. H., Chung, Y. J., Park, B. K., Kim, S. K., Kim, H. S., Kim, C. G., & Chung, T. M. (2014). Growth of p-type tin (II) monoxide thin films by atomic layer deposition from bis (1-dimethylamino-2-methyl-2propoxy) tin and H2O. Chemistry of Materials, 26, 6088–6091. https://doi.org/10.1021/cm503112v

    Article  Google Scholar 

  22. Peng, Q., Sun, X. Y., Spagnola, J. C., Kevin Hyde, G., Spontak, R. J., & Parsons, G. N. (2007). Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Letters, 7(3), 719–722. https://doi.org/10.1021/nl062948i

    Article  Google Scholar 

  23. Tae, H., Cho, N., Farjam, C. R., Allemang, C. P., Pannier, E., Kazyak, C., Huber, M., Rose, O., Trejo, R. L., Peterson, K., & Barton, N. P. (2020). Area-selective atomic layer deposition patterned by electrohydrodynamic jet printing for additive manufacturing of functional materials and devices. ACS Nano, 14, 17262–17272. https://doi.org/10.1021/acsnano.0c07297

    Article  Google Scholar 

  24. Mari Napari, T. N., Huq, D. J., Meeth, M. J., Heikkilä, K. M., Niang, H., Wang, T., Iivonen, H., Wang, M., Leskelä, M., Ritala, A. J., Flewitt, R. L. Z., & Hoye, R. R. (2021). Role of ALD Al2O3 surface passivation on the performance of p-type Cu2O thin film transistors. ACS Applied Materials & Interfaces, 13(3), 4156–4164. https://doi.org/10.1021/acsami.0c18915

    Article  Google Scholar 

  25. Akbari, M. K., Hai, Z., Wei, Z., Detavernier, C., Solano, E., Verpoort, F., & Zhuiykov, S. (2018). ALD-developed plasmonic two-dimensional Au–WO3–TiO2 heterojunction architectonics for design of photovoltaic devices. ACS Applied Materials & Interfaces, 10, 10304–10314. https://doi.org/10.1021/acsami.7b17508

    Article  Google Scholar 

  26. Xicheng Wang, Z., Bao, Y. C., Chang, & Liu, R. S. (2020). Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes. ACS Energy Letters, 5, 3374–3396. https://doi.org/10.1021/acsenergylett.0c01860

    Article  Google Scholar 

  27. Chen, F., Yang, H., Li, K., Deng, B., Li, Q., Liu, X., Dong, B., Wang, X. X. D., Qin, Y., Wang, S. M., Zhang, K. Q., & Xu, W. (2017). Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. Acs Nano, 11, 10330–10336. https://doi.org/10.1021/acsnano.7b05139

    Article  Google Scholar 

  28. Jiazhen Sheng, T. H., Kang, H. D. H., Yi, Y., Lim, J. H., & Park, J. S. (2019). Design of InZnSnO semiconductor alloys synthesized by supercycle atomic layer deposition and their rollable applications. ACS Applied Materials & Interfaces, 11, 12683–12692. https://doi.org/10.1021/acsami.9b02999

    Article  Google Scholar 

  29. Sarli, V. D., Landi, G., Lisi, L., Saliva, A., & Benedetto, A. D. (2016). Catalytic diesel particulate filters with highly dispersed ceria: Effect of the soot-catalyst contact on the regeneration performance. Applied Catalysis B: Environmental, 197, 116–124. https://doi.org/10.1016/j.apcatb.2016.01.073

    Article  Google Scholar 

  30. Wooseok Kang, B., Choi, & Kim, H. (2013). Characteristics of the simultaneous removal of PM and NOx using CuNb-ZSM-5 coated on diesel particulate filter. Journal of Industrial and Engineering Chemistry, 19, 1406–1412. https://doi.org/10.1016/j.jiec.2013.01.004

    Article  Google Scholar 

  31. Zhang, Y., Lou, D., Tan, P., Zhi-yuan, & Hu (2020). Study of spatial and temporal aging characteristic of catalyzed diesel particulate filter catalytic performance used for diesel vehicle. Scientific Reports, 10.1, 1–13. https://doi.org/10.1038/s41598-020-76634-w

    Article  Google Scholar 

  32. Titta Aaltonen, M., Ritala, T., Sajavaara, J., Keinonen, Markku, & Leskelä. (2003). Atomic layer deposition of platinum thin films. Chemistry of Materials, 15(9), 1924–1928. https://doi.org/10.1021/cm021333t

    Article  Google Scholar 

  33. Clinton Lien, M., Konh, B., Chen, A. V., Teplyakov, & Zaera, F. (2018). Gas-phase electron-impact activation of atomic layer deposition (ALD) precursors: MeCpPtMe3. The Journal of Physical Chemistry Letters, 9.16, 4602–4606. https://doi.org/10.1021/acs.jpclett.8b02125

    Article  Google Scholar 

  34. Sahu, N. K., Prakash, A., & Bahadur, D. (2014). Role of different platinum precursors on the formation and reaction mechanism of FePt nanoparticles and their electrocatalytic performance towards methanol oxidation. Dalton Transactions, 43, 4892–4900. https://doi.org/10.1039/C3DT53147C

    Article  Google Scholar 

  35. Worajit Setthapun, W. D., Williams, S. M., Kim, H., Feng, J. W., Elam, A., Rabuffetti, K. R., Poeppelmeier, P. C., Stair, E. A., Stach, Fabio, H., Ribeiro, J. T., Miller, & Marshall, C. L. (2010). Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in situ XAFS analysis and water-gas shift reaction. The Journal of Physical Chemistry C, 114(21), 9758–9771. https://doi.org/10.1021/jp911178m

    Article  Google Scholar 

  36. Lien, C., Sun, H., Qin, X., & Zaera, F. (2018). Platinum atomic layer deposition on metal substrates: A surface chemistry study. Surface Science, 677, 161–166. https://doi.org/10.1016/j.susc.2018.07.002

    Article  Google Scholar 

  37. Sharma, H., & Mhadeshwar, A. (2012). A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC). Applied Catalysis B: Environmental, 127, 190–204. https://doi.org/10.1016/j.apcatb.2012.08.021

    Article  Google Scholar 

  38. Hauff, K., Dubbe, H., Tuttlies, U., Eigenberger, G., & Nieken, U. (2013). Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst-macrokinetic simulation. Applied Catalysis B: Environmental, 129, 273–281. https://doi.org/10.1016/j.apcatb.2012.09.022

    Article  Google Scholar 

  39. Tang, W., Lu, X., Liu, F., Du, S., Weng, J., Hoang, S., Wang, S., Nam, C. Y., & Gao, P. X. (2019). Ceria-based nanoflake arrays integrated on 3D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst. Applied Catalysis B: Environmental, 245, 623–634. https://doi.org/10.1016/j.apcatb.2019.01.028

    Article  Google Scholar 

  40. Salomons, S., Votsmeier, M., Hayes, R. E., Drochner, A., Vogel, H., & Giesho, J. (2006). CO and H2 oxidation on a platinum monolith diesel oxidation catalyst. Catalysis Today, 117, 491–497. https://doi.org/10.1016/j.cattod.2006.06.001

    Article  Google Scholar 

  41. Son Hoang, X., Lu, W., Tang, S., Wang, S., Du, C. Y., Nam, Y., Ding, R. D., & VinluanIII (2019). Jie Zheng, and Pu-Xian Gao, High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs. Catalysis Today, 320, 2–10. https://doi.org/10.1016/j.cattod.2017.11.019

    Article  Google Scholar 

  42. Shoynkhorova, T. B., Rogozhnikov, V. N., Ruban, N. V., Shilov, V. A., Potemkin, D. I., Simonov, P. A., Belyaev, V. D., Snytnikov, P. V., & Sobyanin, V. A. (2019). Composite Rh/Zr0.25Ce0.75O2–δ-ƞ-Al2O3/Fecralloy wire mesh honeycomb module for natural gas, LPG and diesel catalytic conversion to syngas. International Journal of Hydrogen Energy, 44, 9941–9948. https://doi.org/10.1016/j.ijhydene.2018.12.148

    Article  Google Scholar 

  43. Ho, P. H., Woo, J., Ilmasani, R. F., Salam, M. A., Creaser, D., & Olsson, L. (2021). The effect of Si/Al ratio on the oxidation and sulfur resistance of beta zeolite-supported Pt and Pd as diesel oxidation catalysts. ACS Engineering Au. https://doi.org/10.1021/acsengineeringau.1c00016

    Article  Google Scholar 

  44. Verena Pramhaas, M., Roiaz, N., Bosio, M., Corva, C., Rameshan, E., & Vesselli, H. (2020). Interplay between CO disproportionation and oxidation: on the origin of the CO reaction onset on atomic layer deposition-grown Pt/ZrO2 model catalysts. ACS Catalysis, 11, 1208–1214. https://doi.org/10.1021/acscatal.0c03974

    Article  Google Scholar 

  45. Xie, S., Choi, S. I., Lu, N., Roling, L. T., Herron, J. A., Zhang, L., Park, J., Wang, J., Kim, M. J., & Xie, Z. (2014). Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Letters, 14, 570–3576. https://doi.org/10.1021/nl501205j

    Article  Google Scholar 

  46. Jason, R., Avila, E. J., De Marco, J. D., Emery, O. K., Farha, M. J., Pellin, J. T., Hupp, A., & Martinson, B. F. (2014). Real-time observation of atomic layer deposition inhibition: Metal oxide growth on self-assembled alkanethiols. ACS Applied Materials & Interfaces, 6, 11891–11898. https://doi.org/10.1021/am503008j

    Article  Google Scholar 

  47. Matthieu, J., Weber, Adriaan, & J. M., Mackus, M. A., Verheijen, Cees, van der Marel, Wilhelmus, M. M., & Kessels,. (2012). Supported core/shell bimetallic nanoparticles synthesis by atomic layer deposition. Chemistry of Materials, 24(15), 2973–2977. https://doi.org/10.1021/cm301206e

    Article  Google Scholar 

  48. Cooper, J., & Beecham, J. (2013). A study of platinum group metals in three-way autocatalysts. Platinum Metals Review, 57, 281–288. https://doi.org/10.1595/147106713X671457

    Article  Google Scholar 

  49. Ata, R., Salman, C., Enger, X., Auvray, R., Lødeng, M., Menon, D., & Waller, & Rønning, M. (2018). Catalytic oxidation of NO to NO2 for nitric acid production over a Pt/Al2O3 catalyst. Applied Catalysis A General, 564, 142–146. https://doi.org/10.1016/j.apcata.2018.07.019

    Article  Google Scholar 

Download references

Acknowledgements

This work’s characterisation is supported by Research Institute of Advanced Materials (RIAM) at Seoul National University (SNU).

Funding

This work was supported by Material Innovation Leading Project through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2020M3H4A3081879). This work was supported by Tech-Bridge commercialization technology development project through Korea Technology and Information Promotion Agency (TIPA) funded by the ministry of SMEs (S3177448). This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) of the Korean government (NRF-2021R1C1C1009200).

Author information

Authors and Affiliations

Authors

Contributions

SHY, MJK and HK conceived the idea. IJ and HMK supervised the project. HMK analysed Pt-coated Al2O3 powder by using transmission electron microscope. SGK and JH analysed Pt-coated Si wafer by x-ray reflectivity. ESL and YA tested Pt-coated DOC. SHY, MJK, JHJ and IJ wrote the manuscript. JWC, JA, JBC and IJ revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Il Jeon or Hyeongkeun Kim.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, SH., Kil, M.J., Jeon, JH. et al. Conformal Three-Dimensional Platinum Coating Using Rotary-Type Atomic Layer Deposition for a Diesel Oxidation Catalyst Application. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1249–1261 (2023). https://doi.org/10.1007/s40684-022-00475-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00475-3

Keywords

Navigation