Skip to main content
Log in

Green Fabrication of Anti-friction Slippery Liquid-Infused Metallic Surface with Sub-millimeter-Scale Asymmetric Bump Arrays and Its Application

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this work, we present a simple technique for green fabrication of slippery liquid-infused surface (SLIS) with anti-friction property on various metallic substrates using wire electrical discharge machining. Micro-crater structures were successfully obtained, and the surface had excellent liquid-repellent property after modification and infusion of silicone oil. A wide range of liquids including water, juice, coffee, tea, vinegar, albumin, glycerol, and ketchup could easily slid down the surface tilted at an angle of 10° without leaving any trace. The influences of the number of cutting step on the morphology and wettability of the surface were studied comprehensively. Further, the tribological properties of the surface were analyzed and the results showed that the SLIS had a decrease of 73.2% in friction coefficient as compared to that of the smooth surface. By studying the morphology of the worn surfaces, it is found that the SLIS had slight abrasive wear behavior. To demonstrate the precision processing ability of this technology, we fabricated slippery sub-millimeter-scale asymmetric bump arrays, and the experiment results showed that the asymmetric bump arrays had excellent water harvesting ability at low temperatures. This kind of environment-friendly precision machining technology will promote the practical applications of metallic functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu, M. J., Wang, S. T., & Jiang, L. (2017). Nature-inspired superwettability systems. Nature Reviews Materials, 2, 17036.

    Article  Google Scholar 

  2. Si, Y. F., Dong, Z. C., & Jiang, L. (2018). Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Central Science, 4, 1102–1112.

    Article  Google Scholar 

  3. Kreder, M. J., Alvarenga, J., Kim, P., & Aizenberg, J. (2016). Design of anti-icing surfaces: Smooth, textured or slippery? Nature Reviews Materials, 1, 15003.

    Article  Google Scholar 

  4. Kang, B., Sung, J., & So, H. (2021). Realization of superhydrophobic surfaces based on three-dimensional printing technology. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 47–55.

    Article  Google Scholar 

  5. Barthwal, S., & Lim, S. H. (2020). Robust and chemically stable superhydrophobic aluminum-alloy surface with enhanced corrosion-resistance properties. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 481–492.

    Article  Google Scholar 

  6. Jung, K. K., Jung, Y., Park, B. G., Choi, C. J., & Ko, J. S. (2021). Super wear resistant nanostructured superhydrophobic surface. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-021-00325-8

    Article  Google Scholar 

  7. Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A., & Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477, 443–447.

    Article  Google Scholar 

  8. Wu, X. H., & Chen, Z. (2018). A mechanically robust transparent coating for anti-icing and self-cleaning applications. Journal of Materials Chemistry A, 6, 16043–16052.

    Article  Google Scholar 

  9. Epstein, A. K., Wong, T. S., Belisle, R. A., Boggs, E. M., & Aizenberg, J. (2012). Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proceedings of the National Academy of Sciences of the United States of America, 109, 13182–13187.

    Article  Google Scholar 

  10. Zhou, X., Lee, Y. Y., Chong, K. S. L., & He, C. B. (2018). Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance. Journal of Materials Chemistry B, 6, 440–448.

    Article  Google Scholar 

  11. Xiao, L. L., Li, J. S., Mieszkin, S., Di Fino, A., Clare, A. S., Callow, M. E., Callow, J. A., Grunze, M., Rosenhahn, A., & Levkin, P. A. (2013). Slippery liquid-infused porous surfaces showing marine antibiofouling properties. ACS Applied Materials & Interfaces, 5, 10074–10080.

    Article  Google Scholar 

  12. Kim, P., Wong, T. S., Alvarenga, J., Kreder, M. J., Adorno-Martinez, W. E., & Aizenberg, J. (2012). Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano, 6, 6569–6577.

    Article  Google Scholar 

  13. Wilson, P. W., Lu, W. Z., Xu, H. J., Kim, P., Kreder, M. J., Alvarenga, J., & Aizenberg, J. (2013). Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Physical Chemistry Chemical Physics, 15, 581–585.

    Article  Google Scholar 

  14. Juuti, P., Haapanen, J., Stenroos, C., Niemela-Anttonen, H., Harra, J., Koivuluoto, H., Teisala, H., Lahti, J., Tuominen, M., Kuusipalo, J., Vuoristo, P., & Makela, J. M. (2017). Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Applied Physics Letters, 110, 161603.

    Article  Google Scholar 

  15. Zhang, J. L., Gu, C. D., & Tu, J. P. (2017). Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection. ACS Applied Materials & Interfaces, 9, 11247–11257.

    Article  Google Scholar 

  16. Tuo, Y. J., Zhang, H. F., Chen, W. P., & Liu, X. W. (2017). Corrosion protection application of slippery liquid-infused porous surface based on aluminum foil. Applied Surface Science, 423, 365–374.

    Article  Google Scholar 

  17. Wang, P., Lu, Z., & Zhang, D. (2015). Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria. Corrosion Science, 93, 159–166.

    Article  Google Scholar 

  18. Qiu, R., Zhang, Q., Wang, P., Jiang, L. N., Hou, J., Guo, W. M., & Zhang, H. X. (2014). Fabrication of slippery liquid-infused porous surface based on carbon fiber with enhanced corrosion inhibition property. Colloids and Surfaces A: Physicochemical and Engineering Aspectsis, 453, 132–141.

    Article  Google Scholar 

  19. Wang, Y., Zhang, H. F., Liu, X. W., & Zhou, Z. P. (2016). Slippery liquid-infused substrates: A versatile preparation, unique anti-wetting and drag-reduction effect on water. Journal of Materials Chemistry A, 4, 2524–2529.

    Article  Google Scholar 

  20. Hemeda, A. A., & Tafreshi, H. V. (2016). Liquid-infused surfaces with trapped air (LISTA) for drag force reduction. Langmuir, 32, 2955–2962.

    Article  Google Scholar 

  21. Park, K. C., Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J. C., & Aizenberg, J. (2016). Condensation on slippery asymmetric bumps. Nature, 531, 78–82.

    Article  Google Scholar 

  22. Luo, H., Lu, Y., Yin, S. H., Huang, S., Song, J. L., Chen, F. Z., Chen, F. J., Carmalt, C. J., & Parkin, I. P. (2018). Robust platform for water harvesting and directional transport. Journal of Materials Chemistry A, 6, 5635–5643.

    Article  Google Scholar 

  23. Manna, U., & Lynn, D. M. (2015). Fabrication of liquid-infused surfaces using reactive polymer multilayers: Principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces. Advanced Materials, 27, 3007–3012.

    Article  Google Scholar 

  24. Yong, J. L., Chen, F., Yang, Q., Fang, Y., Huo, J. L., Zhang, J. Z., & Hou, X. (2017). Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing. Advanced Materials Interfaces, 4, 1700552.

    Article  Google Scholar 

  25. Luo, J. T. T., Geraldi, N. R. R., Guan, J. H. H., Mchale, G., Wells, G. G. G., & Fu, Y. Q. Q. (2017). Slippery liquid-infused porous surfaces and droplet transportation by surface acoustic waves. Physical Review Applied, 7, 014017.

    Article  Google Scholar 

  26. Chen, X. C., Ren, K. F., Wang, J., Lei, W. X., & Ji, J. (2017). Infusing lubricant onto erasable microstructured surfaces toward guided sliding of liquid droplets. ACS Applied Materials & Interfaces, 9, 1959–1967.

    Article  Google Scholar 

  27. Wang, N., Xiong, D. S., Lu, Y., Pan, S., Wang, K., Deng, Y. L., & Shi, Y. (2016). Design and fabrication of the lyophobic slippery surface and its application in anti-icing. The Journal of Physical Chemistry C, 120, 11054–11059.

    Article  Google Scholar 

  28. Gao, X. Y., & Guo, Z. G. (2017). Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface. Journal of Colloid and Interface Science, 512, 239–248.

    Article  Google Scholar 

  29. Wang, N., Xiong, D. S., Pan, S., Deng, Y. L., & Shi, Y. (2016). Fabrication of superhydrophobic and lyophobic slippery surface on steel substrate. Applied Surface Science, 387, 1219–1224.

    Article  Google Scholar 

  30. Wang, P., Zhang, D., Lu, Z., & Sun, S. M. (2016). Fabrication of slippery lubricant-infused porous surface for inhibition of microbially influenced corrosion. ACS Applied Materials & Interfaces, 8, 1120–1127.

    Article  Google Scholar 

  31. Doll, K., Fadeeva, E., Schaeske, J., Ehmke, T., Winkel, A., Heisterkamp, A., Chichkov, B. N., Stiesch, M., & Stumpp, N. S. (2017). Development of laser-structured liquid-infused titanium with strong biofilm-repellent properties. ACS Applied Materials & Interfaces, 9, 9359–9368.

    Article  Google Scholar 

  32. Bae, W. G., Song, K. Y., Rahmawan, Y., Chu, C. N., Kim, D., Chung do, K., & Suh, K. Y. (2012). One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining. ACS Applied Materials & Interfaces, 4, 3685–3691.

    Article  Google Scholar 

  33. Liu, Y., Moevius, L., Xu, X., Qian, T., Yeomans, J. M., & Wang, Z. (2014). Pancake bouncing on superhydrophobic surfaces. Nature Physics, 10, 515–519.

    Article  Google Scholar 

  34. Liu, C., Liu, Q., Jin, R., Lin, Z., & Xu, Y. (2020). Mechanism analysis and durability evaluation of anti-icing property of superhydrophobic surface. International Journal of Heat and Mass Transfer, 156, 119768.

    Article  Google Scholar 

  35. Zhou, C. L., Wu, X. Y., Lu, Y. J., Wu, W., Zhao, H., & Li, L. J. (2018). Fabrication of hydrophobic Ti3SiC2 surface with micro-grooved structures by wire electrical discharge machining. Ceramics International, 44, 18227–18234.

    Article  Google Scholar 

  36. Wang, H., Chi, G., Wang, Y., Yu, F., & Wang, Z. (2019). Fabrication of superhydrophobic metallic surface on the electrical discharge machining basement. Applied Surface Science, 478, 110–118.

    Article  Google Scholar 

  37. Chen, Z., Yan, Z., Zhou, H., Han, F., & Yan, H. (2021). One-step fabrication of the wear-resistant superhydrophobic structure on SiCp/Al composite surface by WEDM. Surface & Coatings Technology, 409, 126876.

    Article  Google Scholar 

  38. Kojima, A., Natsu, W., & Kunieda, M. (2008). Spectroscopic measurement of arc plasma diameter in EDM. CIRP Annals-Manufacturing Technology, 57, 203–207.

    Article  Google Scholar 

  39. Pérez, R., Carron, J., Rappaz, M., Walder, G., Revaz, B., & Flukiger, R. (2007). Measurement and metallurgical modeling of the thermal impact of EDM discharges on steel. In: Proceedings of the 15th International Symposium on Electromachining, pp. 17–22.

  40. Wang, Y., Yao, S. W., Ding, Z. J., Wu, C. Z., & Xiong, W. (2021). Machining characteristics of USV-MF complex assisted WEDM-LS based on multi-physical coupling. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 387–404.

    Article  Google Scholar 

  41. Salvati, E., & Korsunsky, A. M. (2020). Micro-scale measurement & FEM modelling of residual stresses in AA6082-T6 Al alloy generated by wire EDM cutting. Journal of Materials Processing Technology, 275, 116373.

    Article  Google Scholar 

  42. Tang, J. J., & Yang, X. D. (2018). Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V. Journal of Physics D-Applied Physics, 51, 135308.

    Article  Google Scholar 

  43. Zouaghi, S., Six, T., Bellayer, S., Moradi, S., Hatzikiriakos, S. G., Dargent, T., Thomy, V., Coffinier, Y., Andre, C., Delaplace, G., & Jimenez, M. (2017). Antifouling biomimetic liquid-infused stainless steel: Application to dairy industrial processing. ACS Applied Materials & Interfaces, 9, 26565–26573.

    Article  Google Scholar 

  44. Ma, Q., Wang, W., & Dong, G. N. (2019). Facile fabrication of biomimetic liquid-infused slippery surface on carbon steel and its self-cleaning, anti-corrosion, anti-frosting and tribological properties. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 577, 17–26.

    Google Scholar 

  45. Luo, H., Yin, S. H., Huang, S., Chen, F. J., Tang, Q. C., & Li, X. J. (2019). Fabrication of slippery Zn surface with improved water-impellent, condensation and anti-icing properties. Applied Surface Science, 470, 1139–1147.

    Article  Google Scholar 

  46. Ouyang, Y. B., Zhao, J., Qiu, R., Hu, S. G., Chen, M., & Wang, P. (2019). Liquid-infused superhydrophobic dendritic silver matrix: A bio-inspired strategy to prohibit biofouling on titanium. Surface & Coatings Technology, 367, 148–155.

    Article  Google Scholar 

  47. Yao, W. H., Chen, Y. H., Wu, L., Zhang, J. K., & Pan, F. S. (2022). Effective corrosion and wear protection of slippery liquid-infused porous surface on AZ31 Mg alloy. Surface & Coatings Technology, 429, 127953.

    Article  Google Scholar 

  48. Yang, Z. C., He, X. Y., Chang, J. F., Bai, X. Q., Cao, P., & Yuan, C. Q. (2021). Fabrication of biomimetic slippery liquid-infused porous surface on 5086 aluminum alloy with excellent antifouling performance. Surface and Interface Analysis, 53, 147–155.

    Article  Google Scholar 

  49. Qiu, Z. H., Qiu, R., Xiao, Y. M., Zheng, J. Y., & Lin, C. G. (2018). Slippery liquid-infused porous surface fabricated on CuZn: A barrier to abiotic seawater corrosion and microbiologically induced corrosion. Applied Surface Science, 457, 468–476.

    Article  Google Scholar 

  50. Bai, S. F., Liu, X. H., Xu, L. K., Xuan, J. J., Liu, Y. R., Shao, Y., Xin, Y. L., Li, X. B., & Fan, L. (2022). Enhancement of corrosion resistance and lubricating performance of electrodeposited Ni-Co coating composited with mesoporous silica nanoparticles and silicone oil impregnation. Materials Chemistry and Physics, 282, 125929.

    Article  Google Scholar 

  51. Jambor, M., Kajanek, D., Fintova, S., Broncek, J., Hadzima, B., Guagliano, M., & Bagherifard, S. (2021). Directing surface functions by inducing ordered and irregular morphologies at single and two-tiered length scales. Advanced Engineering Materials, 23, 2001057.

    Article  Google Scholar 

  52. Rowthu, S., & Hoffmann, P. (2018). Perfluoropolyether impregnated mesoporous alumina composites overcome the dewetting-tribological properties trade-off. ACS Applied Materials & Interfaces, 10, 10560–10570.

    Article  Google Scholar 

  53. Wakuda, M., Yamauchi, Y., Kanzaki, S., & Yasuda, Y. (2003). Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear, 254, 356–363.

    Article  Google Scholar 

  54. Chen, F. Y., Ying, J. M., Wang, Y. F., Du, S. Y., Liu, Z. P., & Huang, Q. (2016). Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon, 96, 836–842.

    Article  Google Scholar 

  55. Bowden, F. P., & Tabor, D. (2001). The friction and lubrication of solids. Oxford University Press.

    MATH  Google Scholar 

  56. Fan, H. Z., Zhang, Y. S., Hu, T. C., Song, J. J., Ding, Q., & Hu, L. T. (2015). Surface composition-lubrication design of Al2O3/Ni laminated composites—Part I: Tribological synergy effect of micro-dimpled texture and diamond-like carbon films in a water environment. Tribology International, 85, 142–151.

    Article  Google Scholar 

  57. Golchin, A., Wikner, A., & Emami, N. (2016). An investigation into tribological behaviour of multi-walled carbon nanotube/graphene oxide reinforced UHMWPE in water lubricated contacts. Tribology International, 95, 156–161.

    Article  Google Scholar 

  58. Tang, J. Z., Ding, Q., Zhang, S. W., & Hu, L. T. (2016). The fracture mechanism and the corresponding optimization strategy for nonhydrogenated amorphous carbon film in dimethyl silicone oil. Surface & Coatings Technology, 307, 941–950.

    Article  Google Scholar 

  59. Quan, X., Hu, M., Gao, X. M., Fu, Y. L., Weng, L. J., Wang, D. S., Jiang, D., & Sun, J. Y. (2016). Friction and wear performance of dual lubrication systems combining WS2-MoS2 composite film and low volatility oils under vacuum condition. Tribology International, 99, 57–66.

    Article  Google Scholar 

  60. Andersson, P., Koskinen, J., Varjus, S. E., Gerbig, Y., Haefke, H., Georgiou, S., Zhmud, B., & Buss, W. (2007). Microlubrication effect by laser-textured steel surfaces. Wear, 262, 369–379.

    Article  Google Scholar 

  61. Huang, W., Jiang, L., Zhou, C. X., & Wang, X. L. (2012). The lubricant retaining effect of micro-dimples on the sliding surface of PDMS. Tribology International, 52, 87–93.

    Article  Google Scholar 

  62. Cao, M., Yu, C., Xiao, X., Zhang, B., Zhang, Y., Zhang, C., Ma, H., Cui, X., Li, Z., & Jiang, L. (2018). Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment. ACS Nano, 12, 2048–2055.

    Article  Google Scholar 

  63. Ghosh, A., Ganguly, R., Schutzius, T. M., & Megaridis, C. M. (2014). Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Lab on a Chip, 14, 1538–1550.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U19A20103), the China Postdoctoral Science Foundation (No. 2019M661184), and the Jilin Province Scientific and Technological Development Program (No. YDZJ202101ZYTS025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkai Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Z., Cheng, Y., Xu, J. et al. Green Fabrication of Anti-friction Slippery Liquid-Infused Metallic Surface with Sub-millimeter-Scale Asymmetric Bump Arrays and Its Application. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1281–1298 (2023). https://doi.org/10.1007/s40684-022-00463-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00463-7

Keywords

Navigation