Skip to main content

Toward Optimizing Resonance for Enhanced Triboelectrification of Oscillating Triboelectric Nanogenerators

Abstract

Mechanical resonant designs for oscillating triboelectric nanogenerators (O-TENGs) are effective for boosting output power at a resonant frequency, but there remains room for optimizing output performance because of the various equivalent resonant designs at the same resonant frequency. Here, we report an optimized resonant design for enhancing the output performance of O-TENGs. We theoretically design O-TENGs with different masses and spring stiffnesses at equal resonant frequencies. The triboelectric outputs of the O-TENGs improve with increasing mass and spring stiffness at the resonant frequency. To understand the enhancing mechanism, the dynamic properties such as velocity, acceleration, and contact load are analyzed. We find that increasing the contact load enhances the triboelectric outputs. In addition, we confirm that increasing the gap distance enhances the triboelectric output, but also that there is an optimal gap distance due to the vibration mode of the O-TENG. Finally, we design a tandem O-TENG with a ground system to harvest broadband vibration energy and to synergistically improve the triboelectric performance. We successfully demonstrate an overall four-fold improvement in the output voltage from 38 to 150 V. We expect that our results can provide critical design rules for effectively boosting and optimizing the output power of O-TENGs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Kim, B., Chung, J., Moon, H., Kim, D., & Lee, S. (2018). Elastic spiral triboelectric nanogenerator as a self-charging case for portable electronics. Nano Energy, 50, 133–139.

    Article  Google Scholar 

  2. Pu, X., Guo, H., Chen, J., Wang, X., Xi, Y., Hu, C., et al. (2017). Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Science Advances, 3(7), e1700694.

    Article  Google Scholar 

  3. Han, D.-H., & Kang, L.-H. (2020). Piezoelectric properties of paint sensor according to piezoelectric materials. Functional Composites and Structures, 2, 025002.

    Article  Google Scholar 

  4. Ra, Y., Choi, J. H., La, M., Park, S. J., & Choi, D. (2019). Development of a highly transparent and flexible touch sensor based on triboelectric effect. Functional Composites and Structures, 1, 045001.

    Article  Google Scholar 

  5. Luo, J., Wang, Z., Xu, L., Wang, A. C., Han, K., Jiang, T., et al. (2019). Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 10, 5147.

    Article  Google Scholar 

  6. Lee, D., Chung, J., Yong, H., Lee, S., & Shin, D. (2019). A deformable foam-layered triboelectric tactile sensor with adjustable dynamic range. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 42–51.

    Google Scholar 

  7. Pyo, S., Kwon, D.-S., Ko, H.-J., Eun, Y., & Kim, J. (2021). Frequency up-conversion hybrid energy harvester combining piezoelectric and electromagnetic transduction mechanisms. International Journal of Precision Engineering and Manufacturing-Green Technology., 9, 241–251.

    Article  Google Scholar 

  8. Du, X., Zhao, S., Xing, Y., Li, N., Wang, J., Zhang, X., et al. (2018). Hybridized nanogenerators for harvesting vibrational energy by triboelectric–piezoelectric–electromagnetic effects. Advanced Materials Technology, 3(6), 1800019.

    Article  Google Scholar 

  9. Aldawood, G., Nguyen, H. T., & Bardaweel, H. (2019). High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations. Applied Energy, 253, 113546.

    Article  Google Scholar 

  10. Basset, P., Galayko, D., Paracha, A. M., Marty, F., Dudka, A., & Bourouina, T. (2009). A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. Journal of Micromechanics and Microengineering, 19(11), 115025.

    Article  Google Scholar 

  11. Basset, P., Galayko, D., Cottone, F., Guillement, R., Blokhina, E., Marty, F., et al. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3), 035001.

    Article  Google Scholar 

  12. Ma, X., & Zhang, X. (2017). Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure. Smart Materials and Structures, 26(8), 085001.

    Article  Google Scholar 

  13. Wei, X., Zhao, H., Yu, J., Zhong, Y., Liao, Y., Shi, S., et al. (2021). A tower-shaped three-dimensional piezoelectric energy harvester for low-level and low-frequency vibration. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 1537–1550.

    Article  Google Scholar 

  14. Wu, J., Shi, H., Zhao, T., Yu, Y., & Dong, S. (2016). High-temperature BiScO3–PbTiO3 piezoelectric vibration energy harvester. Advanced Functional Materials, 26(39), 7186–7194.

    Article  Google Scholar 

  15. Sun, X., Wang, F., & Xu, J. (2019). Nonlinear piezoelectric structure for ultralow-frequency band vibration energy harvesting with magnetic interaction. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 671–679.

    Article  Google Scholar 

  16. Wu, C., Wang, A. C., Ding, W., Guo, H., & Wang, Z. L. (2019). Triboelectric nanogenerator: A foundation of the energy for the new era. Advanced Energy Materials, 9(1), 1802906.

    Article  Google Scholar 

  17. Zhu, G., Peng, B., Chen, J., Jing, Q., & Wang, Z. L. (2015). Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 14, 126–138.

    Article  Google Scholar 

  18. Zhou, L., Liu, D., Wang, J., & Wang, Z. L. (2020). Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 8, 481–506.

    Article  Google Scholar 

  19. Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., et al. (2013). Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Advanced Energy Materials, 25(42), 6094–6099.

    Google Scholar 

  20. Hinchet, R., Yoon, H.-J., Ryu, H., Kim, M.-K., Choi, E.-K., Kim, D.-S., et al. (2019). Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 365(6452), 491.

    Article  Google Scholar 

  21. Qiu, W., Feng, Y., Luo, N., Chen, S., & Wang, D. (2020). Sandwich-like sound-driven triboelectric nanogenerator for energy harvesting and electrochromic based on Cu foam. Nano Energy, 70, 104543.

    Article  Google Scholar 

  22. Chen, C., Wen, Z., Shi, J., Jian, X., Li, P., Yeow, J. T., et al. (2020). Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nature Communications, 11, 4143.

    Article  Google Scholar 

  23. Xia, K., Fu, J., & Xu, Z. (2020). Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Advanced Energy Materials, 10(28), 2000426.

    Article  Google Scholar 

  24. Tao, K., Yi, H., Yang, Y., Chang, H., Wu, J., Tang, L., et al. (2020). Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 67, 104197.

    Article  Google Scholar 

  25. Liang, X., Liu, Z., Feng, Y., Han, J., Li, L., An, J., et al. (2021). Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy, 83, 105836.

    Article  Google Scholar 

  26. Toyabur Rahman, M., Sohel Rana, S. M., Salauddin, M., Maharjan, P., Bhatta, T., Kim, H., et al. (2020). A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting. Applied Energy, 279, 115799.

    Article  Google Scholar 

  27. Wang, Z., Zhang, F., Li, N., Yao, T., Lv, D., & Cao, G. (2020). Self-powered multifunctional triboelectric sensor based on PTFE/PU for linear, rotary, and vibration motion sensing. Advanced Materials Technology, 5(7), 2000159.

    Article  Google Scholar 

  28. Xie, Y., Wang, S., Liu, S., Lin, L., Jing, Q., Yang, J., et al. (2014). Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Advanced Materials, 26(38), 6599–6607.

    Article  Google Scholar 

  29. Bhatia, D., Hwang, H. J., Huynh, D. N., Lee, S., Lee, C., Nam, Y., et al. (2019). Continuous scavenging of broadband vibrations via omnipotent tandem triboelectric nanogenerators with cascade impact structure. Scientific Reports, 9, 8223.

    Article  Google Scholar 

  30. Kim, W., Bhatia, D., Hwang, H. J., Choi, K., & Choi, D. (2019). Double impact triboelectric nanogenerators for harvesting broadband vibrations from vehicles. Functional Composites and Structures, 1, 035003.

    Article  Google Scholar 

  31. Bhatia, D., Kim, W., Lee, S., Kim, S. W., & Choi, D. (2017). Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies. Nano Energy, 33, 515–521.

    Article  Google Scholar 

  32. Ibrahim, A., Ramini, A., & Towfighian, S. (2018). Experimental and theoretical investigation of an impact vibration harvester with triboelectric transduction. Journal of Sound and Vibration, 416, 111–124.

    Article  Google Scholar 

  33. Wang, K., Zhou, J., Ouyang, H., Chang, Y., & Xu, D. (2021). A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy. Mechanical Systems and Signal Processing, 151, 107368.

    Article  Google Scholar 

  34. Qi, Y., Liu, G., Gao, Y., Bu, T., Zhang, X., Xu, C., et al. (2021). Frequency band characteristics of a triboelectric nanogenerator and ultra-wide-band vibrational energy harvesting. ACS Applied Materials and Interfaces, 13(22), 26084–26092.

    Article  Google Scholar 

  35. Wang, X., Niu, S., Yi, F., Yin, Y., Hao, C., Dai, K., et al. (2017). Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano, 11(2), 1728–1735.

    Article  Google Scholar 

  36. Kim, W., Bhatia, D., Jeong, S., & Choi, D. (2019). Mechanical energy conversion systems for triboelectric nanogenerators: Kinematic and vibrational designs. Nano Energy, 56, 307–321.

    Article  Google Scholar 

  37. Vasandani, P., Mao, Z.-H., Jia, W., & Sun, M. (2017). Relationship between triboelectric charge and contact load for two triboelectric layers. Journal of Electrostatics, 90, 147–152.

    Article  Google Scholar 

  38. Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y. S., Hu, Y., et al. (2013). Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy & Environmental Science, 6(12), 3576–3583.

    Article  Google Scholar 

  39. Chun, J., Ye, B. U., Lee, J. W., Choi, D., Kang, C.-Y., Kim, S.-W., et al. (2016). Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nature Communications, 7, 12985.

    Article  Google Scholar 

Download references

Acknowledgements

J. Yu and W. Kim equally contributed to this work. This work was supported by the Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-TA1403-51.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Gyun Kim or Dukhyun Choi.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1590 KB)

Supplementary file2 (MP4 14998 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Kim, W., Oh, S. et al. Toward Optimizing Resonance for Enhanced Triboelectrification of Oscillating Triboelectric Nanogenerators. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2022). https://doi.org/10.1007/s40684-022-00442-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-022-00442-y

Keywords

  • Triboelectric nanogenerator
  • System optimization
  • Impact design
  • Synergistic integration