Skip to main content

Improvement of Energy Saving for Hybrid Hydraulic Excavator with Novel Powertrain

Abstract

To reduce the energy consumption and emission, an innovative powertrain and the energy management strategy are proposed for hydraulic excavator in this paper. The novel powertrain consists of the engine, motor/generator, planetary gear, gearbox, and variable hydraulic pump. The energy regeneration system is also applied on the system to regenerate the potential energy and charge the battery. An improved equivalent consumption minimization strategy is proposed to control the engine, motor/generator, hydraulic pump and gearbox. The engine working points can be located in high efficiency range, with the proposed powertrain and the energy management strategy. To verify the energy saving efficiency of the proposed system, the test bench is built in laboratory. Compared with the current hybrid system, the energy saving efficiency reaches 11% in condition of a large velocity. Compared with the current hybrid system and conventional system, the energy saving efficiencies are 4% and 48% respectively with different cylinder velocities. The fuel consumption and emission of hydraulic excavator can be reduced effectively with the proposed powertrain and energy management strategy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Zhang, S. (2019). The effects of control methods on energy efficiency and position tracking of an electro-hydraulic excavator equipped with zonal hydraulics. Automation in Construction, 100, 129–144.

    Article  Google Scholar 

  2. Chen, M., & Zhao, D. (2017). The gravitational potential energy regeneration system with closed-circuit of boom of hydraulic excavator. Mechanical Systems and Signal Processing, 82, 178–192. https://doi.org/10.1016/j.ymssp.2016.05.017.

    Article  Google Scholar 

  3. Ding, R., Zhang, J., Xu, B., Cheng, M., & Pan, M. (2019). Energy efficiency improvement of heavy-load mobile hydraulic manipulator with electronically tunable operating modes. Energy Conversion and Management, 188, 447–461. https://doi.org/10.1016/j.enconman.2019.03.023.

    Article  Google Scholar 

  4. Wang, Z., Jiao, X., Pu, Z., & Han, L. (2018). Energy recovery and reuse management for fuel-electric-hydraulic hybrid powertrain of a construction vehicle. IFAC-Papers Online, 51, 390–393. https://doi.org/10.1016/j.ifacol.2018.10.080.

    Article  Google Scholar 

  5. Yang, J., Bian, Y., Yang, M., Shao, J., & Liang, A. (2021). Parameter Matching of Energy Regeneration System for Parallel Hydraulic Hybrid Loader. Energies, 14, 5014. https://doi.org/10.3390/en14165014.

    Article  Google Scholar 

  6. Ge, L. (2019). Potential energy regeneration method and its engineering applications in large-scale excavators. Energy Conversion and Management, 195, 1309–1318.

    Article  Google Scholar 

  7. Zhang, C., Wang, L., Li, H., & Wang, L. (2020). Experimental research on parameters of a late-model hydraulic-electromotor hybrid pumping unit. Mathematical Problems in Engineering, 2020, 2923154. https://doi.org/10.1155/2020/2923154.

    Article  Google Scholar 

  8. Lin, T., Wang, Q., Hu, B., & Gong, W. (2010). Development of hybrid powered hydraulic construction machinery. Automation in Construction, 19, 11–19. https://doi.org/10.1016/j.autcon.2009.09.005.

    Article  Google Scholar 

  9. Wang, D., Guan, C., Pan, S., Zhang, M., & Lin, X. (2009). Performance analysis of hydraulic excavator powertrain hybridization. Automation in Construction, 18, 249–257. https://doi.org/10.1016/j.autcon.2008.10.001.

    Article  Google Scholar 

  10. Yu, Y.-X., & Ahn, K. K. (2020). Energy regeneration and reuse of excavator swing system with hydraulic accumulator. Int J of Precis Eng and Manuf-Green Tech, 7, 859–873. https://doi.org/10.1007/s40684-019-00157-7.

    Article  Google Scholar 

  11. Ahn, K. K., Ho, T. H., & Dinh, Q. T. (2008). A study on energy saving potential of hydraulic control system using switching type closed loop constant pressure system. Proceedings of the JFPS International Symposium on Fluid Power, 2008, 317–322. https://doi.org/10.5739/isfp.2008.317.

    Article  Google Scholar 

  12. Xia, L. (2018). Energy efficiency analysis of integrated drive and energy recuperation system for hydraulic excavator boom. Energy Conversion and Management, 156, 680–687.

    Article  Google Scholar 

  13. Zhang, W., Wang, J., Du, S., Ma, H., Zhao, W., & Li, H. (2019). Energy management strategies for hybrid construction machinery: evolution, classification. Comparison and Future Trends. Energies, 12, 2024. https://doi.org/10.3390/en12102024.

    Article  Google Scholar 

  14. Wang, T., & Wang, Q. (2014). Efficiency analysis and evaluation of energy-saving pressure-compensated circuit for hybrid hydraulic excavator. Automation in Construction, 47, 62–68. https://doi.org/10.1016/j.autcon.2014.07.012.

    Article  Google Scholar 

  15. Wang, T., Wang, Q., & Lin, T. (2013). Improvement of boom control performance for hybrid hydraulic excavator with potential energy recovery. Automation in Construction, 30, 161–169. https://doi.org/10.1016/j.autcon.2012.11.034.

    Article  Google Scholar 

  16. Minav, T. A., Virtanen, A., Laurila, L., & Pyrhönen, J. (2012). Storage of energy recovered from an industrial forklift. Automation in Construction, 22, 506–515. https://doi.org/10.1016/j.autcon.2011.11.010.

    Article  Google Scholar 

  17. Yu, Y.-X., & Ahn, K. K. (2019). Optimization of energy regeneration of hybrid hydraulic excavator boom system. Energy Conversion and Management, 183, 26–34. https://doi.org/10.1016/j.enconman.2018.12.084.

    Article  Google Scholar 

  18. Ranjan, P., Wrat, G., Bhola, M., Mishra, S. K., & Das, J. (2020). A novel approach for the energy recovery and position control of a hybrid hydraulic excavator. ISA Transactions, 99, 387–402. https://doi.org/10.1016/j.isatra.2019.08.066.

    Article  Google Scholar 

  19. Yu, Y.-X., & Ahn, K. K. (2020). Improvement of energy regeneration for hydraulic excavator swing system. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 53–67. https://doi.org/10.1007/s40684-019-00165-7.

    Article  Google Scholar 

  20. Hao, Y. (2018). Potential energy directly conversion and utilization methods used for heavy duty lifting machinery. Energy, 155, 241–255.

    Article  Google Scholar 

  21. Huang, W., Zhang, X., Ge, L., & Quan, L. (2021). Dual source integrated driving for hydraulic excavator swing system. IEEE Access, 9, 120755–120764. https://doi.org/10.1109/ACCESS.2021.3108796.

    Article  Google Scholar 

  22. Lin, T., Wang, Q., Hu, B., & Gong, W. (2010). Research on the energy regeneration systems for hybrid hydraulic excavators. Automation in Construction. https://doi.org/10.1016/j.autcon.2010.08.002.

    Article  Google Scholar 

  23. Lin, T., Huang, W., Ren, H., Fu, S., & Liu, Q. (2016). New compound energy regeneration system and control strategy for hybrid hydraulic excavators. Automation in Construction, 68, 11–20. https://doi.org/10.1016/j.autcon.2016.03.016.

    Article  Google Scholar 

  24. Chen, Q., Lin, T., Ren, H., & Fu, S. (2019). Novel potential energy regeneration systems for hybrid hydraulic excavators. Mathematics and Computers in Simulation, 163, 130–145. https://doi.org/10.1016/j.matcom.2019.02.017.

    MathSciNet  Article  MATH  Google Scholar 

  25. Ge, L. (2018). A novel hydraulic excavator boom driving system with high efficiency and potential energy regeneration capability. Energy Conversion and Management, 166, 308–317.

    Article  Google Scholar 

  26. Ge, L. (2017). Efficiency improvement and evaluation of electric hydraulic excavator with speed and displacement variable pump. Energy Conversion and Management, 150, 62–71.

    Article  Google Scholar 

  27. Paganelli, G., Delprat, S., Guerra, T. M., Rimaux, J., & Santin, J. J. (2002). Equivalent consumption minimization strategy for parallel hybrid powertrains. Vehicular technology conference. IEEE 55th Vehicular Technology Conference, 4, 2076–2081. https://doi.org/10.1109/VTC.2002.1002989.

    Article  Google Scholar 

  28. Onori, S., Serrao, L., & Rizzoni, G. (2010). Adaptive equivalent consumption minimization strategy for hybrid electric vehicles. ASME 2010 dynamic systems and control conference (1st ed., pp. 499–505). Cambridge: ASMEDC. https://doi.org/10.1115/DSCC2010-4211.

    Book  Google Scholar 

  29. Sun, C., Sun, F., & He, H. (2017). Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles. Applied Energy, 185, 1644–1653. https://doi.org/10.1016/j.apenergy.2016.02.026.

    Article  Google Scholar 

  30. Tian, X., Cai, Y., Sun, X., Zhu, Z., & Xu, Y. (2019). An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses. Energy, 189, 116151. https://doi.org/10.1016/j.energy.2019.116151.

    Article  Google Scholar 

  31. Yu, Y., Do, T. C., Park, Y., & Ahn, K. K. (2021). Energy saving of hybrid hydraulic excavator with innovative powertrain. Energy Conversion and Management, 244, 114447. https://doi.org/10.1016/j.enconman.2021.114447.

    Article  Google Scholar 

  32. Chen, Z., Mi, C. C., Xia, B., & You, C. (2014). Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin’s minimum principle. Journal of Power Sources, 272, 160–168. https://doi.org/10.1016/j.jpowsour.2014.08.057.

    Article  Google Scholar 

  33. Syed, S. A., Lhomme, W., & Bouscayrol, A. (2011). Modeling of power split device with clutch for heavy-duty millitary vehicles. IEEE Vehicle Power and Propulsion Conference. https://doi.org/10.1109/VPPC.2011.6043134.

    Article  Google Scholar 

  34. Zeng, X., Yang, N., Song, D., Zhang, C., Wang, J., Wang, J., et al. (2016). Multi-factor integrated parametric design of power-split hybrid electric bus. Journal of Cleaner Production, 115, 88–100. https://doi.org/10.1016/j.jclepro.2015.07.034.

    Article  Google Scholar 

  35. Liu, J., & Peng, H. (2008). Modeling and control of a power-split hybrid vehicle. IEEE Transactions on Control Systems Technology, 16, 1242–1251. https://doi.org/10.1109/TCST.2008.919447.

    Article  Google Scholar 

  36. Cai, Y., Ouyang, M. G., & Yang, F. (2017). Impact of power split configurations on fuel consumption and battery degradation in plug-in hybrid electric city buses. Applied Energy, 188, 257–269. https://doi.org/10.1016/j.apenergy.2016.11.126.

    Article  Google Scholar 

  37. Chen, S.-Y., Wu, C.-H., Hung, Y.-H., & Chung, C.-T. (2018). Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization. Energy, 160, 154–170. https://doi.org/10.1016/j.energy.2018.06.023.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, South Korean (NRF-2020R1A2B5B03001480 and by China Postdoctoral Science Foundation [2021M701477].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Kwan Ahn.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Do, T.C., Yin, B. et al. Improvement of Energy Saving for Hybrid Hydraulic Excavator with Novel Powertrain. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2022). https://doi.org/10.1007/s40684-022-00437-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-022-00437-9

Keywords

  • Fuel consumption
  • Emission
  • Energy management
  • Hybrid hydraulic excavator
  • Energy regeneration