Skip to main content
Log in

One-Step Fabrication of Superhydrophobic Surfaces with Wettability Gradient Using Three-Dimensional Printing

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Polymer surfaces with wettability gradient were fabricated using three-dimensional (3D) printing technology to control the velocity of droplets on the surfaces. A microscale pattern of a semicircular casting mold was created layer-by-layer using a 3D printer based on fused deposition modeling. A surface with a wettability gradient was fabricated by replicating the semicircular mold with a continuously varying surface slope. Water contact angle measurements and droplet test results demonstrated the characterization of the wettability gradient. Droplets were released on a gradient surface inclined at 80°, and their movements were controlled; the locations of the droplets after collision on the ground were tracked. The distance of the main drop and splash drop was found to be reduced by 96.7% (from 6.1 to 0.2 cm) and 87.8% (from 18.8 to 2.3 cm), respectively, compared to that on a general superhydrophobic surface. This study demonstrates a simple, rapid, and inexpensive microfabrication method for functional polymer surfaces to control droplet movement using 3D printing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C., & Barthlott, W. (2011). Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2, 152–161.

    Article  Google Scholar 

  2. Latthe, S. S., Terashima, C., Nakata, K., & Fujishima, A. (2014). Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules, 19, 4256–4283.

    Article  Google Scholar 

  3. Bhushan, B., & Her, E. K. (2010). Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir, 26, 8207–8217.

    Article  Google Scholar 

  4. Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24, 4114–4119.

    Article  Google Scholar 

  5. Oeffner, J., & Lauder, G. V. (2012). The hydrodynamic function of shark skin and two biomimetic applications. The Journal of Experimental Biology, 215, 785–795.

    Article  Google Scholar 

  6. Wen, L., Weaver, J. C., & Lauder, G. V. (2014). Biomimetic shark skin: Design, fabrication and hydrodynamic function. The Journal of Experimental Biology, 217, 1656–1666.

    Article  Google Scholar 

  7. Gu, Z. Z., Uetsuka, H., Takahashi, K., Nakajima, R., Onishi, H., Fujishima, A., & Sato, O. (2003). Structural color and the lotus effect. Angewandte Chemie International Edition, 42, 894–897.

    Article  Google Scholar 

  8. Seo, K., Wober, M., Steinvurzel, P., Schonbrun, E., Dan, Y., Ellenbogen, T., & Crozier, K. B. (2011). Multicolored vertical silicon nanowires. Nano Letters, 11, 1851–1856.

    Article  Google Scholar 

  9. Ma, M., & Hill, R. M. (2006). Superhydrophobic surfaces. Current Opinion in Colloid & Interface Science, 11, 193–202.

    Article  Google Scholar 

  10. Onda, T., Shibuichi, S., Satoh, N., & Tsujii, K. (1996). Super-water-repellent fractal surfaces. Langmuir, 12, 2125.

    Article  Google Scholar 

  11. Tian, P., & Guo, Z. (2017). Bioinspired silica-based superhydrophobic materials. Applied Surface Science, 426, 1–18.

    Article  Google Scholar 

  12. Singh, A. K., & Singh, J. K. (2019). An efficient use of waste PE for hydrophobic surface coating and its application on cotton fibers for oil-water separator. Progress in Organic Coatings, 131, 301–310.

    Article  Google Scholar 

  13. Kooij, E. S., Jansen, H. P., Bliznyuk, O., Poelsema, B., & Zandvliet, H. J. W. (2012). Directional wetting on chemically patterned substrates. Colloids and Surfaces A: Physicochemical and engineering Aspects, 413, 328–333.

    Article  Google Scholar 

  14. Chowdhury, I. U., Sinha Mahapatra, P., & Sen, A. K. (2019). Self-driven droplet transport: Effect of wettability gradient and confinement. Physics of Fluids, 31, 1–12.

    Article  Google Scholar 

  15. Nakashima, Y., Nakanishi, Y., & Yasuda, T. (2015). Automatic droplet transportation on a plastic microfluidic device having wettability gradient surface. The Review of Scientific Instruments, 86, 1–6.

    Article  Google Scholar 

  16. Lee, J. H., Khang, G., Lee, J. W., & Lee, H. B. (1998). Interaction of different types of cells on polymer surfaces with wettability gradient. Journal of Colloid and Interface Science, 205, 323–330.

    Article  Google Scholar 

  17. Kim, M. S., Khang, G., & Lee, H. B. (2008). Gradient polymer surfaces for biomedical applications. Progress in Polymer Science, 33, 138–164.

    Article  Google Scholar 

  18. Sun, C., Zhao, X. W., Han, Y. H., & Gu, Z. Z. (2008). Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment. Thin Solid Films, 516, 4059–4063.

    Article  Google Scholar 

  19. Wang, X., Xu, B., Chen, Y., Ma, C., & Huang, Y. (2019). Fabrication of micro/nano-hierarchical structures for droplet manipulation via velocity-controlled picosecond laser surface texturing. Optics and Lasers in Engineering, 122, 319–327.

    Article  Google Scholar 

  20. Qi, L., Niu, Y., Ruck, C., & Zhao, Y. (2019). Mechanical-activated digital microfluidics with gradient surface wettability. Lab on a Chip, 19, 223–232.

    Article  Google Scholar 

  21. Morgenthaler, S., Lee, S., Zürcher, S., & Spencer, N. D. (2003). A simple, reproducible approach to the preparation of surface-chemical gradients. Langmuir, 19, 10459–10462.

    Article  Google Scholar 

  22. Liao, Q., Wang, H., Zhu, X., & Li, M. (2006). Liquid droplet movement on horizontal surface with gradient surface energy. Science in China Series E: Technological Sciences, 49, 733–741.

    Article  Google Scholar 

  23. Zhang, G., Zhang, X., Li, M., & Su, Z. (2014). A surface with superoleophilic-to-superoleophobic wettability gradient. ACS Applied Materials & Interfaces, 6, 1729–1733.

    Article  Google Scholar 

  24. Zhang, J., & Han, Y. (2008). A topography/chemical composition gradient polystyrene surface: Toward the investigation of the relationship between surface wettability and surface structure and chemical composition. Langmuir, 24, 796–801.

    Article  Google Scholar 

  25. Zhao, N., Li, M., Gong, H., & Bai, H. (2020). Controlling ice formation on gradient wettability surface for high-performance bioinspired materials. Science Advances, 6, 1–10.

    Article  Google Scholar 

  26. Liu, H., Xu, J., Li, Y., Li, B., Jun, M., & Zhang, X. (2006). Fabrication and characterization of an organic-inorganic gradient surface made by polymethylsilsesquioxane (PMSQ). Macromolecular Rapid Communications, 27, 1603–1607.

    Article  Google Scholar 

  27. Banuprasad, T. N., Vinay, T. V., Subash, C. K., Varghese, S., George, S. D., & Varanakkottu, S. N. (2017). Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient. ACS Applied Materials & Interfaces, 9, 28046–28054.

    Article  Google Scholar 

  28. Yu, X., Wang, Z., Jiang, Y., & Zhang, X. (2006). Surface gradient material: From superhydrophobicity to superhydrophilicity. Langmuir, 22, 4483–4486.

    Article  Google Scholar 

  29. Sehayek, T., Vaskevich, A., & Rubinstein, I. (2003). Preparation of graded materials by laterally controlled template synthesis. Journal of the American Chemical Society, 125, 4718–4719.

    Article  Google Scholar 

  30. Liu, C., Sun, J., Li, J., Xiang, C., Che, L., Wang, Z., & Zhou, X. (2017). Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. Scientific Reports, 7, 1–8.

    Google Scholar 

  31. Huang, D. J., & Leu, T. S. (2013). Fabrication of high wettability gradient on copper substrate. Applied Surface Science, 280, 25–32.

    Article  Google Scholar 

  32. Tokunaga, A., & Tsuruta, T. (2020). Enhancement of condensation heat transfer on a microstructured surface with wettability gradient. International Journal of Heat and Mass Transfer, 156, 119839.

    Article  Google Scholar 

  33. Pitt, W. G. (1989). Fabrication of a continuous wettability gradient by radio frequency plasma discharge. Journal of Colloid and Interface Science, 133, 223–227.

    Article  Google Scholar 

  34. Ito, Y., Heydari, M., Hashimoto, A., Konno, T., Hirasawa, A., Hori, S., & Nakajima, A. (2007). The movement of a water droplet on a gradient surface prepared by photodegradation. Langmuir, 23, 1845–1850.

    Article  Google Scholar 

  35. Daniel, S., & Chaudhury, M. K. (2002). Rectified motion of liquid drops on gradient surfaces induced by vibration. Langmuir, 18, 3404–3407.

    Article  Google Scholar 

  36. Furet, B., Poullain, P., & Garnier, S. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, 28, 58–64.

    Article  Google Scholar 

  37. Vyatskikh, A., Delalande, S., Kudo, A., Zhang, X., Portela, C. M., & Greer, J. R. (2018). Additive manufacturing of 3D nano-architected metals. Nature Communiations, 9, 1–8.

    Google Scholar 

  38. Buj-Corral, I., Bagheri, A., Domínguez-Fernández, A., & Casado-López, R. (2019). Influence of infill and nozzle diameter on porosity of FDM printed parts with rectilinear grid pattern. Procedia Manufacturing, 41, 288–295.

    Article  Google Scholar 

  39. Sukindar, N. A., Ariffin, M. K. A., Hang Tuah Baharudin, B. T., Jaafar, C. N. A., & Ismail, M. I. S. (2016). Analyzing the effect of nozzle diameter in fused deposition modeling for extruding polylactic acid using open source 3D printing. Journal of Teknol, 78, 7–15.

    Google Scholar 

  40. Shin, S., & So, H. (2020). Effect of 3D printing raster angle on reversible thermo-responsive composites using PLA/Paper bilayer. Smart Materials and Structures, 29, 105016.

    Article  Google Scholar 

  41. Sung, J., & So, H. (2021). 3D printing-assisted fabrication of microgrid patterns for flexible antiadhesive polymer surfaces. Surfaces and Interfaces, 23, 100935.

    Article  Google Scholar 

  42. Ding, S., Zou, B., Wang, P., & Ding, H. (2019). Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polymer Testing, 78, 105948.

    Article  Google Scholar 

  43. Alsoufi, M. S., Alhazmi, M. W., Suker, D. K., Alghamdi, T. A., Sabbagh, R. A., Felemban, M. A., & Bazuhair, F. K. (2019). Experimental characterization of the influence of nozzle temperature in FDM 3D printed pure PLA and advanced PLA+. American Journal of Mechanical Engineering, 7, 45–60.

    Article  Google Scholar 

  44. Akhoundi, B., Nabipour, M., Hajami, F., & Shakoori, D. (2020). An experimental study of nozzle temperature and heat treatment (Annealing) effects on mechanical properties of high-temperature polylactic acid in fused deposition modeling. Polymer Engineering and Science, 60, 979–987.

    Article  Google Scholar 

  45. Kang, B., Hyeon, J., & So, H. (2020). Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology. Applied Surface Science, 499, 143733.

    Article  Google Scholar 

  46. Kang, B., Sung, J., & So, H. (2021). Realization of superhydrophobic surfaces based on three-dimensional printing technology. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1), 47–55.

    Article  Google Scholar 

  47. Xu, Z., & Lü, F. (2013). A static contact angle algorithm and its application to hydrophobicity measurement in silicone rubber corona aging test. IEEE Transactions on Dielectrics and Electrical Insulation, 20, 1820–1831.

    Article  Google Scholar 

  48. Ali, M., & Hackam, R. (2008). Effects of saline water and temperature on surface properties of HTV silicone rubber. IEEE Transactions on Dielectrics and Electrical Insulation, 15, 1368–1378.

    Article  Google Scholar 

  49. Ruben, B., Elisa, M., Leandro, L., Victor, M., Gloria, G., Marina, S., & Nadhira, L. (2017). Oxygen plasma treatments of polydimethylsiloxane surfaces: effect of the atomic oxygen on capillary flow in the microchannels. Micro & Nano Letters, 12, 754–757.

    Article  Google Scholar 

  50. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28, 988–994.

    Article  Google Scholar 

  51. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551.

    Article  Google Scholar 

  52. Faria-Briceno, J. J., Neumann, A., Schunk, P. R., & Brueck, S. R. J. (2019). Measuring liquid drop properties on nanoscale 1D patterned photoresist structures. Scientific Reports, 9, 1–9.

    Article  Google Scholar 

  53. Cheng, C. T., To, S., & Zhang, G. (2020). Characterization of intermediate wetting states on micro-grooves by water droplet contact line. Journal of Industrial and Engineering Chemistry, 91, 69–78.

    Article  Google Scholar 

  54. Xu, J., Hou, Y., Lian, Z., Yu, Z., Wang, Z., & Yu, H. (2020). Bio-inspired design of bi/tridirectionally anisotropic sliding superhydrophobic titanium alloy surfaces. Nanomaterials, 10, 1–17.

    Article  Google Scholar 

  55. Zheng, Y., Gao, X., & Jiang, L. (2007). Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 3, 178–182.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2020R1A4A1019074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyun So.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MOV 52694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, J., Lee, H.M., Yoon, G.H. et al. One-Step Fabrication of Superhydrophobic Surfaces with Wettability Gradient Using Three-Dimensional Printing. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 85–96 (2023). https://doi.org/10.1007/s40684-022-00418-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00418-y

Keywords

Navigation