Skip to main content
Log in

Observation and Modeling of the Effects of Temperature and UV Lights on Weathering-Induced Degradation of PC/ABS Blend for Sustainable Consumer Electronics

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This study aims to develop a general model to examine the weathering-induced degradation of a polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) blend under various temperatures and UV irradiance levels. The carbonyl index (CI) was measured with respect to the diverse conditions by Fourier-transform infrared (FT-IR) spectroscopy. Then, a response surface model for the CI with respect to the temperature and UV irradiance was established. The glossiness, tensile properties, and Izod impact resistance were measured under various weathering conditions. The fracture properties were also tested using the essential work of fracture (EWF) method. The correlations between these properties and the CI were determined. The results show that the fracture toughness and crack growth resistance measured by the EWF tests were significantly reduced even at a low CI level, i.e., the early degradation stage, whereas the tensile properties and impact resistance did not noticeably change. Although the tensile properties and impact resistances maintained their initial properties until a certain CI value, the fracture characteristics degraded rapidly, even at the initial degradation level. The model was verified by comparison with samples weathered outdoors for four and six months in Seoul, Republic of Korea. It was confirmed that the model for the Izod impact strength (IZOD) with a CI function can predict the experimental IZOD data for the outdoor-weathered specimens using the predicted CI values, with an error of 5.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of Data and Material

The raw/processed data required to reproduce these findings cannot be shared at this time, as the data also forms part of an ongoing study.

Code Availability

Not Applicable.

References

  1. Barlow, J. W., & Paul, D. R. (1981). Polymer blends and alloys—a review of selected considerations. Polymer Engineering & Science, 21(15), 985–996.

    Article  Google Scholar 

  2. Huang, J. C., & Wang, M. S. (1989). Recent advances in ABS/PC blends. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 9(4), 293–299.

    Article  Google Scholar 

  3. Keitz, J. D., Barlow, J. W., & Paul, D. R. (1984). Polycarbonate blends with styrene/acrylonitrile copolymers. Journal of Applied Polymer Science, 29(10), 3131–3145.

    Article  Google Scholar 

  4. Suarez, H., Barlow, J. W., & Paul, D. R. (1984). Mechanical properties of ABS/polycarbonate blends. Journal of Applied Polymer Science, 29(11), 3253–3259.

    Article  Google Scholar 

  5. Tjong, S. C., & Meng, Y. Z. (2000). Effect of reactive compatibilizers on the mechanical properties of polycarbonate/poly (acrylonitrile–butadiene–styrene) blends. European Polymer Journal, 36(1), 123–129.

    Article  Google Scholar 

  6. Balart, R., Lopez, J., García, D., & Salvador, M. D. (2005). Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. European Polymer Journal, 41(9), 2150–2160.

    Article  Google Scholar 

  7. Jeon, S. H., Choi, W. C., Park, T. H., Kim, H. M., Jung, E. I., Baek, C. K., Seo, K. J., & Choi, B. H. (2012). Development of a new light-weight car audio using polycarbonate/acrylonitrile–butadiene–styrene copolymer composite based hybrid material. International Journal of Precision Engineering and Manufacturing, 13, 85–96.

    Article  Google Scholar 

  8. Greco, R., & Sorrentino, A. (1994). Polycarbonate/ABS blends: A literature review. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 13(4), 249–258.

    Article  Google Scholar 

  9. Levchik, S. V., & Weil, E. D. (2006). Flame retardants in commercial use or in advanced development in polycarbonates and polycarbonate blends. Journal of Fire Sciences, 24(2), 137–151.

    Article  Google Scholar 

  10. Feldman, D. (2002). Polymer weathering: Photo-oxidation. Journal of Polymers and the Environment, 10(4), 163–173.

    Article  Google Scholar 

  11. Shah, A. U. R., Prabhakar, M. N., & Song, J. I. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites—A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 247–262.

    Article  Google Scholar 

  12. Pickett, J. E., Gardner, M. M., Gibson, D. A., & Rice, S. T. (2005). Global weathering of aromatic engineering thermoplastics. Polymer Degradation and Stability, 90(3), 405–417.

    Article  Google Scholar 

  13. Satoto, R., Subowo, W. S., Yusiasih, R., Takane, Y., Watanabe, Y., & Hatakeyama, T. (1997). Weathering of high-density polyethylene in different latitudes. Polymer Degradation and Stability, 56(3), 275–279.

    Article  Google Scholar 

  14. Wee, J. W., Choi, M. S., Hyun, H. C., Hwang, J. H., & Choi, B. H. (2018). Effect of weathering-induced degradation on the fracture and fatigue characteristics of injection-molded polypropylene/talc composites. International Journal of Fatigue, 117, 111–120.

    Article  Google Scholar 

  15. Mendes, L. C., Rufino, E. S., De Paula, F. O., & Torres, A. C., Jr. (2003). Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro City. Polymer Degradation and Stability., 79(3), 371–383.

    Article  Google Scholar 

  16. Allen, N. S., Mudher, M., & Green, P. (1984). Photo-stabilising action of ortho-hydroxy aromatic compounds in polypropylene film: UV absorption versus radical scavenging. Polymer Degradation and Stability, 7(2), 83–94.

    Article  Google Scholar 

  17. Gulmine, J. V., Janissek, P. R., Heise, H. M., & Akcelrud, L. (2003). Degradation profile of polyethylene after artificial accelerated weathering. Polymer Degradation and Stability, 79(3), 385–397.

    Article  Google Scholar 

  18. Zhao, B. Y., Yi, X. W., Li, R. Y., Zhu, P. F., & Hu, K. A. (2003). Characterization to the weathering extent of LLDPE/LDPE thin film. Journal of Applied Polymer Science, 88(1), 12–16.

    Article  Google Scholar 

  19. Lv, Y., Huang, Y., Yang, J., Kong, M., Yang, H., Zhao, J., & Li, G. (2015). Outdoor and accelerated laboratory weathering of polypropylene: A comparison and correlation study. Polymer Degradation and Stability, 112, 145–159.

    Article  Google Scholar 

  20. Diepens, M., & Gijsman, P. (2011). Outdoor and accelerated weathering studies of bisphenol A polycarbonate. Polymer Degradation and Stability., 96(4), 649–652.

    Article  Google Scholar 

  21. Pickett, J. E., Gibson, D. A., Rice, S. T., & Gardner, M. M. (2008). Effects of temperature on the weathering of engineering thermoplastics. Polymer Degradation and Stability., 93(3), 684–691.

    Article  Google Scholar 

  22. Tjandraatmadja, G. F., Burn, L. S., & Jollands, M. C. (2002). Evaluation of commercial polycarbonate optical properties after QUV-A radiation—the role of humidity in photodegradation. Polymer Degradation and Stability, 78(3), 435–448.

    Article  Google Scholar 

  23. Kaplan, M. L., & Kelleher, P. G. (1970). Photo-oxidation of polymers without light: Oxidation of polybutadiene and an ABS polyblend with singlet oxygen. Journal of Polymer Science Part A 1: Polymer Chemistry, 8(11), 3163–3175.

    Google Scholar 

  24. Ghaemy, M., & Scott, G. (1981). Photo-and thermal oxidation of ABS: Correlation of loss of impact strength with degradation of the rubber component. Polymer Degradation and Stability, 3(3), 233–242.

    Article  Google Scholar 

  25. Coquillat, M., Verdu, J., Colin, X., Audouin, L., & Nevière, R. (2007). Thermal oxidation of polybutadiene. Part 1: Effect of temperature, oxygen pressure and sample thickness on the thermal oxidation of hydroxyl-terminated polybutadiene. Polymer Degradation and Stability, 92(7), 1326–1333.

    Article  Google Scholar 

  26. Santos, R. M., Botelho, G. L., & Machado, A. V. (2010). Artificial and natural weathering of ABS. Journal of Applied Polymer Science, 116(4), 2005–2014.

    Google Scholar 

  27. Santos, R. M., Pimenta, A., Botelho, G., & Machado, A. V. (2013). Influence of the testing conditions on the efficiency and durability of stabilizers against ABS photo-oxidation. Polymer Testing, 32(1), 78–85.

    Article  Google Scholar 

  28. Li, J., Chen, F., Yang, L., Jiang, L., & Dan, Y. (2017). FTIR analysis on aging characteristics of ABS/PC blend under UV-irradiation in air. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184, 361–367.

    Article  Google Scholar 

  29. Saviello, D., Pouyet, E., Toniolo, L., Cotte, M., & Nevin, A. (2014). Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile–butadiene–styrene model samples and historical objects. Analytica Chimica Acta, 843, 59–72.

    Article  Google Scholar 

  30. ASTM E399–17. (2017). Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. ASTM international.

    Google Scholar 

  31. Broberg, K. B. (1975). On stable crack growth. Journal of the Mechanics and Physics of Solids, 23(3), 215–237.

    Article  Google Scholar 

  32. Cotterell, B., & Reddel, J. K. (1977). The essential work of plane stress ductile fracture. International Journal of Fracture, 13(3), 267–277.

    Article  Google Scholar 

  33. Bárány, T., Czigány, T., & Karger-Kocsis, J. (2010). Application of the essential work of fracture (EWF) concept for polymers, related blends and composites: A review. Progress in Polymer Science, 35(10), 1257–1287.

    Article  Google Scholar 

  34. Choi, B. H., Demirors, M., Patel, R. M., deGroot, A. W., Anderson, K. W., & Juarez, V. (2010). Evaluation of the tear properties of polyethylene blown films using the essential work of fracture concept. Polymer, 51(12), 2732–2739.

    Article  Google Scholar 

  35. Mai, Y. W., & Powell, P. (1991). Essential work of fracture and j-integral measurements for ductile polymers. Journal of Polymer Science Part B: Polymer Physics, 29(7), 785–793.

    Article  Google Scholar 

  36. Chan, W. Y., & Williams, J. G. (1994). Determination of the fracture toughness of polymeric films by the essential work method. Polymer, 35(8), 1666–1672.

    Article  Google Scholar 

  37. Karger-Kocsis, J., & Czigany, T. (1996). On the essential and non-essential work of fracture of biaxial-oriented filled PET film. Polymer, 37(12), 2433–2438.

    Article  Google Scholar 

  38. Rink, M., Andena, L., & Marano, C. (2014). The essential work of fracture in relation to J-integral. Engineering Fracture Mechanics., 127, 46–55.

    Article  Google Scholar 

  39. ASTM D638–14. (2014). Standard Test Method for Tensile Properties of Plastics. ASTM international.

    Google Scholar 

  40. ASTM D256–10. (2018). Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International.

    Google Scholar 

  41. Mai, Y. W., & Cotterell, B. (1985). Effect of specimen geometry on the essential work of plane stress ductile fracture. Engineering Fracture Mechanics, 21(1), 123–128.

    Article  Google Scholar 

  42. Cunliffe, A. V., & Davis, A. (1982). Photo-oxidation of thick polymer samples—part II: The influence of oxygen diffusion on the natural and artificial weathering of polyolefins. Polymer Degradation and Stability, 4(1), 17–37.

    Article  Google Scholar 

  43. Choi, B. H., Zhou, Z., Chudnovsky, A., Stivala, S. S., Sehanobish, K., & Bosnyak, C. P. (2005). Fracture initiation associated with chemical degradation: Observation and modeling. International Journal of Solids and Structures, 42(2), 681–695.

    Article  MATH  Google Scholar 

  44. Mehr, M. Y., Van Driel, W. D., Jansen, K. M., Deeben, P., Boutelje, M., & Zhang, G. Q. (2013). Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties. Optical Materials, 35(3), 504–508.

    Article  Google Scholar 

  45. Pickett, J. E. (2011). Influence of photo-Fries reaction products on the photodegradation of bisphenol-A polycarbonate. Polymer Degradation and Stability, 96(12), 2253–2265.

    Article  Google Scholar 

  46. Pickett, J. E., Gibson, D. A., & Gardner, M. M. (2008). Effects of irradiation conditions on the weathering of engineering thermoplastics. Polymer Degradation and Stability, 93(8), 1597–1606.

    Article  Google Scholar 

  47. Pickett, J. E., Barren, J. P., & Oliver, R. J. (1997). Effect of accelerated exposure conditions on the photodegradation of BPA polycarbonate/ABS blends. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 247(1), 1–8.

    Article  Google Scholar 

  48. Iannuzzi, G., Mattsson, B., & Rigdahl, M. (2013). Color changes due to thermal ageing and artificial weathering of pigmented and textured ABS. Polymer Engineering & Science, 53(8), 1687–1695.

    Article  Google Scholar 

  49. Pérez, J. M., Vilas, J. L., Laza, J. M., Arnaiz, S., Mijangos, F., Bilbao, E., & León, L. M. (2010). Effect of reprocessing and accelerated weathering on ABS properties. Journal of Polymers and the Environment, 18(1), 71–78.

    Article  Google Scholar 

  50. Pérez, J. M., Vilas, J. L., Laza, J. M., Arnáiz, S., Mijangos, F., Bilbao, E., Rodríguez, M., & León, L. M. (2010). Effect of reprocessing and accelerated ageing on thermal and mechanical polycarbonate properties. Journal of Materials Processing Technology, 210(5), 727–733.

    Article  Google Scholar 

  51. Wildes, G., Keskkula, H., & Paul, D. R. (1999). Fracture characterization of PC/ABS blends: Effect of reactive compatibilization ABS type and rubber concentration. Polymer, 40(25), 7089–7107.

    Article  Google Scholar 

  52. Tan, Z. Y., Xu, X. F., Sun, S. L., Zhou, C., Ao, Y. H., Zhang, H. X., & Han, Y. (2006). Influence of rubber content in ABS in wide range on the mechanical properties and morphology of PC/ABS blends with different composition. Polymer Engineering & Science, 46(10), 1476–1484.

    Article  Google Scholar 

  53. Kim, J., Park, S. S., Cho, N., Kim, W., & Cho, H. K. (2011). Recent variations of UV irradiance at Seoul 2004–2010. Atmosphere, 21(4), 429–438.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program (R&D, P0002115) for The Industries of Economic Cooperation Region.

Author information

Authors and Affiliations

Authors

Contributions

J-WW methodology, validation, formal analysis, investigation, data curation, writing—original draft, visualization. M-SC validation, formal analysis. H-CH resources, data curation, project administration. J-HH resources, data curation. B-HC conceptualization, validation, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Byoung-Ho Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests nor personal relationships that could influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wee, JW., Choi, MS., Hyun, HC. et al. Observation and Modeling of the Effects of Temperature and UV Lights on Weathering-Induced Degradation of PC/ABS Blend for Sustainable Consumer Electronics. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1369–1385 (2022). https://doi.org/10.1007/s40684-021-00392-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00392-x

Keywords

Navigation