Skip to main content
Log in

CNC Corner Milling Parameters Optimization Based on Variable-Fidelity Metamodel and Improved MOPSO Regarding Energy Consumption

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In the corner milling process, processing energy consumption is a very important objective, since the energy efficiency of CNC machine is barely above 14.8%. Meanwhile, the excessive processing temperature will increase the thermal deformation of the product and leads to quality decline. Improper process parameters will lead to unnecessary high temperature and energy consumption. By optimizing the process parameters, the appropriate temperature and Specific Energy Consumption can be obtained. This study investigated into modeling Specific Energy Consumption and temperature in corner milling process using variable-fidelity metamodels. The adopted variable-fidelity metamodels are constructed by Hierarchical Kriging, in which 48 sets of low-fidelity data obtained from the AdvantEdge software simulation are used to reflect the trends of the metamodels, and 16 sets of high-precision data obtained from physical experiments are used to calibrate the trends. The experimental cost is reduced and the prediction accuracy is increased by making full use of both sets of data. An improved K-means Multi-objective Particle Swarm Optimization algorithm was adopted and applied on the multi-objective corner milling parameters optimization problem to find satisfactory specific energy consumption and temperature. The obtained Pareto solutions can provide guidance for selecting process parameters according to different requirements, such as reducing energy consumption or temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, B., Liu, Z., Song, Q., Wan, Yi., & Ren, X. (2020). An approach for reducing cutting energy consumption. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(5–8), 35–51.

    Article  Google Scholar 

  2. Shi, K. N., Ren, J. X., Wang, S. B., Liu, N., Liu, Z. M., Zhang, D. H., & Lu, W. F. (2019). An improved cutting power-based model for evaluating total energy. Journal of Cleaner Production, 231, 1330–1341. https://doi.org/10.1016/j.jclepro.2019.05.323

    Article  Google Scholar 

  3. Salahi, N., & Jafari, M. A. (2016). Energy-performance as a driver for optimal production planning. Applied Energy, 174, 88–100. https://doi.org/10.1016/j.apenergy.2016.04.085

    Article  Google Scholar 

  4. Newman, S. T., Nassehi, A., Imani-Asrai, R., & Dhokia, V. (2012). Energy efficient process planning for CNC machining. CIRP Journal of Manufacturing Science and Technology, 5(2), 127–136. https://doi.org/10.1016/j.cirpj.2012.03.007

    Article  Google Scholar 

  5. Misaka, T., Herwan, J., Ryabov, O., Kano, S., Sawada, H., Kasashima, N., & Furukawa, Y. (2020). Prediction of surface roughness in CNC turning by model-assisted response surface method. Precision Engineering, 62, 196–203. https://doi.org/10.1016/j.precisioneng.2019.12.004

    Article  Google Scholar 

  6. Jang, D., Jung, J., & Seok, J. (2016). Modeling and parameter optimization for cutting energy reduction in MQL milling process. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 5–12. https://doi.org/10.1007/s40684-016-0001-y

    Article  Google Scholar 

  7. Zhou, J., Ren, J., & Yao, C. (2017). Multi-objective optimization of multi-axis ball-end milling Inconel 718 via grey relational analysis coupled with RBF neural network and PSO algorithm. Measurement, 102, 271–285. https://doi.org/10.1016/j.measurement.2017.01.057

    Article  Google Scholar 

  8. Sahu, N. K., & Andhare, A. B. (2017). Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti–6Al–4V using RSM and GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(12), 5069–5085. https://doi.org/10.1007/s40430-017-0804-y

    Article  Google Scholar 

  9. Malghan, R. L., Rao, K. M. C., Shettigar, A. K., Rao, S. S., & D Souza, R. J. (2017). Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(9), 3541–3553. https://doi.org/10.1007/s40430-016-0675-7

    Article  Google Scholar 

  10. Rao, K. V. (2019). A novel approach for minimization of tool vibration and surface roughness in orthogonal turn milling of silicon bronze alloy. Silicon, 11(2), 691–701. https://doi.org/10.1007/s12633-018-9953-6

    Article  Google Scholar 

  11. Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073.

    Article  MathSciNet  Google Scholar 

  12. Teimouri, R., & Baseri, H. (2015). Forward and backward predictions of the friction stir welding parameters using fuzzy-artificial bee colony-imperialist competitive algorithm systems. Journal of Intelligent Manufacturing, 26(2), 307–319. https://doi.org/10.1007/s10845-013-0784-4

    Article  Google Scholar 

  13. Abdullah, H., Ramli, R., & Wahab, D. A. (2017). Tool path length optimisation of contour parallel milling based on modified ant colony optimisation. The International Journal of Advanced Manufacturing Technology, 92(1–4), 1263–1276. https://doi.org/10.1007/s00170-017-0193-5

    Article  Google Scholar 

  14. Acı, Ç. İ, & Gülcan, H. (2019). A modified dragonfly optimization algorithm for single-and multiobjective problems using brownian motion. Computational Intelligence and Neuroscience, 2019, 1.

    Article  Google Scholar 

  15. Yang, Y. (2018). Machining parameters optimization of multi-pass face milling using a chaotic imperialist competitive algorithm with an efficient constraint-handling mechanism. Computer Modeling in Engineering & Sciences, 116(3), 365–389.

    Article  Google Scholar 

  16. Khalilpourazari, S., & Khalilpourazary, S. (2018). Optimization of production time in the multi-pass milling process via a Robust Grey Wolf Optimizer. Neural Computing and Applications, 29(12), 1321–1336. https://doi.org/10.1007/s00521-016-2644-6

    Article  Google Scholar 

  17. Gómez, D., & Rojas, A. (2016). An empirical overview of the no free lunch theorem and its effect on real-world machine learning classification. Neural Computation, 28(1), 216–228. https://doi.org/10.1162/NECO_a_00793

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C., Tang, Y., Cui, L., & Li, P. (2015). A quantitative approach to analyze carbon emissions of CNC-based machining systems. Journal of Intelligent Manufacturing, 26(5), 911–922.

    Article  Google Scholar 

  19. Han, F., Li, Li., Cai, W., Li, C., Deng, X., & Sutherland, J. W. (2020). Parameters optimization considering the trade-off between cutting power and MRR based on linear decreasing particle swarm algorithm in milling. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.121388

    Article  Google Scholar 

  20. Luoke, Hu., Cai, W., Shu, L., Kangkang, Xu., Zheng, H., & Jia, S. (2020). Energy optimisation for end face turning with variable material removal rate considering the spindle speed changes. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 1–14.

    Google Scholar 

  21. Luan, X., Zhang, S., & Li, G. (2018). Modified power prediction model based on infinitesimal. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 71–80. https://doi.org/10.1007/s40684-018-0008-7

    Article  Google Scholar 

  22. Chen, X., Li, C., Jin, Y., & Li, L. (2018). Optimization of cutting parameters with a sustainable consideration of electrical energy and embodied energy of materials. The International Journal of Advanced Manufacturing Technology, 96(1–4), 775–788.

    Google Scholar 

  23. Li, C., Chen, X., Tang, Y., & Li, L. (2017). Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost. Journal of Cleaner Production, 140, 1805–1818.

    Article  Google Scholar 

  24. Zhang, H., Deng, Z., Fu, Y., Lv, L., & Yan, C. (2017). A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions. Journal of cleaner production, 148, 174–184.

    Article  Google Scholar 

  25. Rajemi, M. F., Mativenga, P. T., & Aramcharoen, A. (2010). Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. Journal of Cleaner Production, 18(10–11), 1059–1065.

    Article  Google Scholar 

  26. Chenwei, S., Zhang, X., Bin, S., & Zhang, D. (2019). An improved analytical model of cutting temperature in orthogonal cutting of Ti6Al4V. Chinese Journal of Aeronautics, 32(3), 759–769.

    Article  Google Scholar 

  27. Zhang, Y., Zhang, Z., Zhang, G., & Li, W. (2020). Reduction of energy consumption and thermal deformation in wedm by magnetic field assisted technology. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(7), 391–404.

    Article  Google Scholar 

  28. Karaguzel, U., & Budak, E. (2018). Investigating effects of milling conditions on cutting temperatures through analytical and experimental methods. Journal of Materials Processing Technology, 262, 532–540.

    Article  Google Scholar 

  29. Liu C, He Y, Wang Y, Li Y, Wang S, Wang L, Wang Y. (2020). Effects of process parameters on cutting temperature in dry machining of ball screw. ISA transactions, 101, 493–502.

  30. Lazoglu, I., & Altintas, Y. (2002). Prediction of tool and chip temperature in continuous and interrupted machining. International Journal of Machine Tools and Manufacture, 42(9), 1011–1022. https://doi.org/10.1016/S0890-6955(02)00039-1

    Article  Google Scholar 

  31. Davoudinejad, A., Tosello, G., Parenti, P., & Annoni, M. (2017). 3D finite element simulation of micro end-milling by considering the effect of tool run-out. Micromachines, 8(6), 187. https://doi.org/10.3390/mi8060187

    Article  Google Scholar 

  32. Muaz, M., & Choudhury, S. K. (2020). A realistic 3D finite element model for simulating multiple rotations of modified milling inserts using coupled temperature-displacement analysis. International journal of advanced manufacturing technology, 107(1–2), 343–354. https://doi.org/10.1007/s00170-020-05085-4

    Article  Google Scholar 

  33. Hu, J., Zhou, Q., Jiang, P., Shao, X., & Xie, T. (2018). An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging. Engineering Optimization, 50(1), 145–163.

    Article  Google Scholar 

  34. Han, Z. H., & Görtz, S. (2012). Hierarchical kriging model for variable-fidelity surrogate modeling. Aiaa Journal, 50(9), 1885–1896.

    Article  Google Scholar 

  35. Chao, S., Yang, X., & Song, W. (2016). Efficient aerodynamic optimization method using hierarchical Kriging model combined with gradient. Journal of Aviation, 037(007), 2144–2155.

    Google Scholar 

  36. Huang M, Yang X, Peng X. (2017). Efficient variable-fidelity multi-point aerodynamic shape optimization based on hierarchical kriging. 55th AIAA Aerospace Sciences Meeting.

  37. Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020). A novel intelligent reasoning system to estimate energy consumption and optimize cutting parameters toward sustainable machining. Journal of Cleaner Production, 261, 121160.

    Article  Google Scholar 

  38. Li, C., Xiao, Q., Tang, Y., & Li, L. (2016). A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. Journal of Cleaner Production, 135, 263–275.

    Article  Google Scholar 

  39. Yang, Y., Gao, Z., & Cao, L. (2018). Identifying optimal process parameters in deep penetration laser welding by adopting Hierarchical-Kriging model. Infrared Physics and Technology, 92, 443–453.

    Article  Google Scholar 

  40. Yuepeng, B. U., Wenping, S., Zhonghua, H., & ZHANG Y, ZHANG L. . (2020). Aerodynamic/aeroacoustic variable-fidelity optimization of helicopter rotor based on hierarchical kriging model. Chinese Journal of Aeronautics, 33(2), 476–492.

    Article  Google Scholar 

  41. Mousa, A. A., El-Shorbagy, M. A., & Farag, M. A. (2017). K-means-clustering based evolutionary algorithm for multi-objective resource allocation problems. Applied Mathematics and Information Sciences, 11(6), 1681–1692. https://doi.org/10.18576/amis/110615

    Article  MathSciNet  Google Scholar 

  42. Zhan, Z. H., Zhang, J., Li, Y., & Chung, S. H. (2009). Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(6), 1362–1381.

    Article  Google Scholar 

  43. Wang, H., Jin, Y., & Yao, X. (2017). Diversity assessment in many-objective optimization. Cybernetics IEEE Transactions on, 47(6), 1510–1522.

    Article  Google Scholar 

  44. Xinlei, J. (2006). PSO-based Multi-objective Optimization Algorithm Research and Its Applications. Hangzhou: Zhejiang University.

    Google Scholar 

  45. Bo, L. H., & Ma, J. L. (2019). A brief discussion of standardization practice of aeronautical valve production. China Standardization, 14, 290–293. https://doi.org/10.13535/j.cnki.11-4406/n.2015.21.024

    Article  Google Scholar 

  46. Ruijiang, L., Yewang, Z., Chongwei, W., & Jian, T. (2010). Study on the design and analysis methods of orthogonal experiment. Experimental Technology and Management, 9, 52–55.

    Google Scholar 

  47. Linlin, Z., Liping, Z., & Xiaoying, L. (2013). Experimental study on aluminum alloy high-speed milling based on orthogonal test design. Journal of Chengdu Aeronautic Polytechnic, 4, 16.

    Google Scholar 

  48. He, M., & K. L. . (2014). Optimization of structural parameters of end mill in high speed milling 6061 aluminum alloy based on AdvantEdge. Tool Engineering, 48(10), 29r–32r.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under grant no. 51705182

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, Y., Liao, Q. et al. CNC Corner Milling Parameters Optimization Based on Variable-Fidelity Metamodel and Improved MOPSO Regarding Energy Consumption. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 977–995 (2022). https://doi.org/10.1007/s40684-021-00338-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00338-3

Keywords

Navigation