Skip to main content
Log in

Abstract

In this study, a superhydrophobic nickel surface that is highly robust against repetitive rubbing is presented. We implanted carbon nanotubes (CNTs) to protect the surfaces from contacts. We show that the CNTs implanted in nickel do not easily detach from the surface and maintain superhydrophobicity despite harsh rubbing (40 kPa, 600 cycles) by 800 grit sandpaper; by contrast, surfaces prepared by typical nanofabrication methods are visibly damaged and lose superhydrophobicity after such treatment. The CNT-implanted nickel surfaces developed in this study are the most robust among nanostructured surfaces reported up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chattopadhyay, S., Huang, Y. F., Jen, Y. J., Ganguly, A., Chen, K. H., & Chen, L. C. (2010). Anti-reflecting and photonic nanostructures. Materials Science and Engineering: R: Reports, 69(1–3), 1–35.

    Article  Google Scholar 

  2. Senanayake, P., Lin, A., Mariani, G., Shapiro, J., Tu, C., Scofield, A. C., & Huffaker, D. L. (2010). Photoconductive gain in patterned nanopillar photodetector arrays. Applied Physics Letters, 97(20), 203108.

    Article  Google Scholar 

  3. Hong, S. H., Bae, B. J., Lee, H., & Jeong, J. H. (2010). Fabrication of high density nano-pillar type phase change memory devices using flexible AAO shaped template. Microelectronic Engineering, 87(11), 2081–2084.

    Article  Google Scholar 

  4. Chen, H., Xue, Q., Yan, K., Xie, J., Zhou, X., & Li, J. (2009). Ethanol gas sensitivity of carbon nanotip arrays/n-Si heterojunctions at room temperature. Journal of Applied Physics, 106(5), 053718.

    Article  Google Scholar 

  5. Lo, H. C., Hsiung, H. I., Chattopadhyay, S., Han, H. C., Chen, C. F., Leu, J. P., & Chen, L. C. (2011). Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Biosensors and Bioelectronics, 26(5), 2413–2418.

    Article  Google Scholar 

  6. Zhu, H. Y., Lan, Y., Gao, X. P., Ringer, S. P., Zheng, Z. F., Song, D. Y., & Zhao, J. C. (2005). Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. Journal of the American Chemical Society, 127(18), 6730–6736.

    Article  Google Scholar 

  7. Kolmakov, A., & Moskovits, M. (2004). Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annual Review of Materials Research, 34, 151–180.

    Article  Google Scholar 

  8. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., & Van Schalkwijk, W. (2011). Nanostructured materials for advanced energy conversion and storage devices. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research And Review Articles From Nature Publishing Group (pp. 148–159). https://doi.org/10.1142/9789814317665_0022.

  9. Kamat, P. V. (2007). Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. The Journal of Physical Chemistry C, 111(7), 2834–2860.

    Article  Google Scholar 

  10. Frackowiak, E., & Beguin, F. (2002). Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 40(10), 1775–1787.

    Article  Google Scholar 

  11. Xia, F., & Jiang, L. (2008). Bio-inspired, smart, multiscale interfacial materials. Advanced materials, 20(15), 2842–2858.

    Article  Google Scholar 

  12. Sanchez, C., Arribart, H., & Guille, M. M. G. (2005). Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature materials, 4(4), 277–288.

    Article  Google Scholar 

  13. Gao, X., & Jiang, L. (2004). Water-repellent legs of water striders. Nature, 432(7013), 36–36.

    Article  Google Scholar 

  14. Blossey, R. (2003). Self-cleaning surfaces—virtual realities. Nature materials, 2(5), 301–306.

    Article  Google Scholar 

  15. Zhu, J., Hsu, C. M., Yu, Z., Fan, S., & Cui, Y. (2010). Nanodome solar cells with efficient light management and self-cleaning. Nano Letters, 10(6), 1979–1984.

    Article  Google Scholar 

  16. Park, Y. B., Im, H., Im, M., & Choi, Y. K. (2011). Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. Journal of Materials Chemistry, 21(3), 633–636.

    Article  Google Scholar 

  17. Ji, H., Chen, G., Yang, J., Hu, J., Song, H., & Zhao, Y. (2013). A simple approach to fabricate stable superhydrophobic glass surfaces. Applied Surface Science, 266, 105–109.

    Article  Google Scholar 

  18. Zari, M. P. (2007). Biomimetic approaches to architectural design for increased sustainability. In: The SB07 NZ sustainable building conference. p. 1–10.

  19. Xiu, Y., Liu, Y., Hess, D. W., & Wong, C. P. (2010). Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology, 21(15), 155705.

    Article  Google Scholar 

  20. Yanagisawa, T., Nakajima, A., Sakai, M., Kameshima, Y., & Okada, K. (2009). Preparation and abrasion resistance of transparent super-hydrophobic coating by combining crater-like silica films with acicular boehmite powder. Materials Science and Engineering: B, 161(1–3), 36–39.

    Article  Google Scholar 

  21. Zimmermann, J., Reifler, F. A., Fortunato, G., Gerhardt, L. C., & Seeger, S. (2008). A simple, one-step approach to durable and robust superhydrophobic textiles. Advanced Functional Materials, 18(22), 3662–3669.

    Article  Google Scholar 

  22. Bayer, I. S., Brown, A., Steele, A., & Loth, E. (2009). Transforming anaerobic adhesives into highly durable and abrasion resistant superhydrophobic organoclay nanocomposite films: A new hybrid spray adhesive for tough superhydrophobicity. Applied Physics Express, 2(12), 125003.

    Article  Google Scholar 

  23. Li, Y., Li, L., & Sun, J. (2010). Bioinspired self-healing superhydrophobic coatings. AngewandteChemie International Edition, 49(35), 6129–6133.

    Article  Google Scholar 

  24. Zhu, X., Zhang, Z., Yang, J., Xu, X., Men, X., & Zhou, X. (2012). Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability. Journal of colloid and interface science, 380(1), 182–186.

    Article  Google Scholar 

  25. Su, F., & Yao, K. (2014). Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS applied materials & interfaces, 6(11), 8762–8770.

    Article  Google Scholar 

  26. Groten, J., & Rühe, J. (2013). Surfaces with combined microscale and nanoscale structures: A route to mechanically stable superhydrophobic surfaces? Langmuir, 29(11), 3765–3772.

    Article  Google Scholar 

  27. Xue, C. H., & Ma, J. Z. (2013). Long-lived superhydrophobic surfaces. Journal of Materials Chemistry A, 1(13), 4146–4161.

    Article  Google Scholar 

  28. Xu, Q. F., Mondal, B., & Lyons, A. M. (2011). Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method. ACS Applied Materials & Interfaces, 3(9), 3508–3514.

    Article  Google Scholar 

  29. Wang, F. J., Lei, S., Ou, J. F., Xue, M. S., & Li, W. (2013). Superhydrophobic surfaces with excellent mechanical durability and easy repairability. Applied Surface Science, 276, 397–400.

    Article  Google Scholar 

  30. Tang, X., Wang, T., Yu, F., Zhang, X., Zhu, Q., Pang, L., & Pei, M. (2013). Simple, robust and large-scale fabrication of superhydrophobic surfaces based on silica/polymer composites. RSC Advances, 3(48), 25670–25673.

    Article  Google Scholar 

  31. Huovinen, E., Hirvi, J., Suvanto, M., & Pakkanen, T. A. (2012). Micro–micro hierarchy replacing micro–nano hierarchy: A precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces. Langmuir, 28(41), 14747–14755.

    Article  Google Scholar 

  32. Verho, T., Bower, C., Andrew, P., Franssila, S., Ikkala, O., & Ras, R. H. (2011). Mechanically durable superhydrophobic surfaces. Advanced Materials, 23(5), 673–678.

    Article  Google Scholar 

  33. Choi, S. J., & Huh, S. Y. (2010). Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells. Macromolecular Rapid Communications, 31(6), 539–544.

    Article  Google Scholar 

  34. Boinovich, L. B., Domantovskiy, A. G., Emelyanenko, A. M., Pashinin, A. S., Ionin, A. A., Kudryashov, S. I., & Saltuganov, P. N. (2014). Femtosecond laser treatment for the design of electro-insulating superhydrophobic coatings with enhanced wear resistance on glass. ACS Applied Materials & Interfaces, 6(3), 2080–2085.

    Article  Google Scholar 

  35. Cho, H., Kim, D., Lee, C., & Hwang, W. (2013). A simple fabrication method for mechanically robust superhydrophobic surface by hierarchical aluminum hydroxide structures. Current Applied Physics, 13(4), 762–767.

    Article  Google Scholar 

  36. Xiu, Y., Liu, Y., Balu, B., Hess, D. W., & Wong, C. (2012). Robust superhydrophobic surfaces prepared with epoxy resin and silica nanoparticles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(3), 395–401.

    Article  Google Scholar 

  37. Huovinen, E., Takkunen, L., Korpela, T., Suvanto, M., Pakkanen, T. T., & Pakkanen, T. A. (2014). Mechanically robust superhydrophobic polymer surfaces based on protective micropillars. Langmuir, 30(5), 1435–1443.

    Article  Google Scholar 

  38. Jokinen, V., Suvanto, P., Garapaty, A. R., Lyytinen, J., Koskinen, J., & Franssila, S. (2013). Durable superhydrophobicity in embossed CYTOP fluoropolymer micro and nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 207–212.

    Article  Google Scholar 

  39. Dai, S., Zhang, D., Shi, Q., Han, X., Wang, S., & Du, Z. (2013). Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments. CrystEngComm, 15(27), 5417–5424.

    Article  Google Scholar 

  40. Cha, T. G., Yi, J. W., Moon, M. W., Lee, K. R., & Kim, H. Y. (2010). Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Langmuir, 26(11), 8319–8326.

    Article  Google Scholar 

  41. Fujii, T., Aoki, Y., & Habazaki, H. (2011). Fabrication of super-oil-repellent dual pillar surfaces with optimized pillar intervals. Langmuir, 27(19), 11752–11756.

    Article  Google Scholar 

  42. Kim, D. H., Kim, Y., Hwang, S. H., Bang, Y. S., Cho, C. R., Kim, Y. K., & Kim, J. M. (2011). Experimental and theoretical evaluation of wettability on micro/nano hierarchically engineered surfaces based on robust micro-post-arrayed-and highly ordered nano-rippled-structures. Applied Surface Science, 257(21), 8985–8992.

    Article  Google Scholar 

  43. Ko, H., Zhang, Z., Takei, K., & Javey, A. (2010). Hierarchical polymer micropillar arrays decorated with ZnO nanowires. Nanotechnology, 21(29), 295305.

    Article  Google Scholar 

  44. Si-Si, L., Chao-Hui, Z., Han-Bing, Z., Jie, Z., Jian-Guo, H., & Heng-Yang, Y. (2013). Fabrication of pillar-array superhydrophobic silicon surface and thermodynamic analysis on the wetting state transition. Chinese Physics B, 22(10), 106801.

    Article  Google Scholar 

  45. Jung, Y. C., & Bhushan, B. (2009). Mechanically durable carbon nanotube−composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. ACS Nano, 3(12), 4155–4163.

    Article  Google Scholar 

  46. Guo, F., Su, X., Hou, G., & Li, P. (2012). Bioinspired fabrication of stable and robust superhydrophobic steel surface with hierarchical flowerlike structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 401, 61–67.

    Article  Google Scholar 

  47. Meng, K., Jiang, Y., Jiang, Z., Lian, J., & Jiang, Q. (2014). Impact dynamics of water droplets on Cu films with three-level hierarchical structures. Journal of Materials Science, 49(9), 3379–3390.

    Article  Google Scholar 

  48. She, Z., Li, Q., Wang, Z., Li, L., Chen, F., & Zhou, J. (2013). Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chemical Engineering Journal, 228, 415–424.

    Article  Google Scholar 

  49. Psarski, M., Celichowski, G., Marczak, J., Gumowski, K., & Sobieraj, G. B. (2013). Superhydrophobic dual-sized filler epoxy composite coatings. Surface and Coatings Technology, 225, 66–74.

    Article  Google Scholar 

  50. Manna, U., & Lynn, D. M. (2013). Restoration of superhydrophobicity in crushed polymer films by treatment with water: Self-healing and recovery of damaged topographic features aided by an unlikely source. Advanced Materials, 25(36), 5104–5108.

    Article  Google Scholar 

  51. Ogihara, H., Okagaki, J., & Saji, T. (2011). Facile fabrication of colored superhydrophobic coatings by spraying a pigment nanoparticle suspension. Langmuir, 27(15), 9069–9072.

    Article  Google Scholar 

  52. Li, J., Jing, Z., Zha, F., Yang, Y., Wang, Q., & Lei, Z. (2014). Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes. ACS Applied Materials & Interfaces, 6(11), 8868–8877.

    Article  Google Scholar 

  53. Yuan, Z., Xiao, J., Zeng, J., Wang, C., Liu, J., Xing, S., & Chen, H. (2010). Facile method to prepare a novel honeycomb-like superhydrophobic Polydimethylsiloxan surface. Surface and Coatings Technology, 205(7), 1947–1952.

    Article  Google Scholar 

  54. Jung, K., Jung, Y., Choi, C., Park, B., Kim, S., & Ko, J. (2017). Durable super-hydrophobic nickel surfaces with a high rubbing resistance and their application in triboelectric nanogenerators. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 716–719).

  55. Zhang, Y., Chen, Y., Shi, L., Li, J., & Guo, Z. (2012). Recent progress of double-structural and functional materials with special wettability. Journal of Materials Chemistry, 22(3), 799–815.

    Article  Google Scholar 

  56. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., & Zhu, D. (2002). Super-hydrophobic surfaces: from natural to artificial. Advanced materials, 14(24), 1857–1860.

    Article  Google Scholar 

  57. Bhushan, B., & Her, E. K. (2010). Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir, 26(11), 8207–8217.

    Article  Google Scholar 

  58. Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: a superhydrophobic state with high adhesive force. Langmuir, 24(8), 4114–4119.

    Article  Google Scholar 

  59. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551.

    Article  Google Scholar 

  60. Lee, J. M., Lee, S. H., & Ko, J. S. (2015). Dynamic lateral adhesion force of water droplets on microstructured hydrophobic surfaces. Sensors and Actuators B: Chemical, 213, 360–367.

    Article  Google Scholar 

  61. Cho, D. J., Kim, S. E., Seo, E., Lee, M. C., Lee, J. M., & Ko, J. S. (2013). Underwater micro gas detector. Sensors and Actuators B: Chemical, 188, 347–353.

    Article  Google Scholar 

  62. Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1–8.

    Article  Google Scholar 

  63. Bhushan, B. (2011). Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein Journal of Nanotechnology, 2(1), 66–84.

    Article  Google Scholar 

  64. Burton, Z., & Bhushan, B. (2005). Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro-and nanoelectromechanical systems. Nano Letters, 5(8), 1607–1613.

    Article  Google Scholar 

  65. Srinivasan, S., Praveen, V. K., Philip, R., & Ajayaghosh, A. (2008). Bioinspired superhydrophobic coatings of carbon nanotubes and linear π systems based on the “bottom-up” self-assembly approach. AngewandteChemie International Edition, 47(31), 5750–5754.

    Article  Google Scholar 

  66. Ulman, A. (1996). Formation and structure of self-assembled monolayers. Chemical Reviews, 96(4), 1533–1554.

    Article  Google Scholar 

  67. Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35(3), 357–401.

    Article  Google Scholar 

  68. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988–994.

    Article  Google Scholar 

  69. Kim, Y. W., Lee, J. M., Lee, I., Lee, S. H., & Ko, J. S. (2013). Skin friction reduction in tubes with hydrophobically structured surfaces. International Journal of Precision Engineering and Manufacturing, 14(2), 299–306.

    Article  Google Scholar 

  70. Choi, C. H., Ulmanella, U., Kim, J., Ho, C. M., & Kim, C. J. (2006). Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of Fluids, 18(8), 087105.

    Article  Google Scholar 

  71. Choi, C. H., & Kim, C. J. (2006). Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Physical Review Letters, 96(6), 066001.

    Article  Google Scholar 

  72. Truesdell, R., Mammoli, A., Vorobieff, P., van Swol, F., & Brinker, C. J. (2006). Drag reduction on a patterned superhydrophobic surface. Physical Review Letters, 97(4), 044504.

    Article  Google Scholar 

  73. Joseph, P., Cottin-Bizonne, C., Benoit, J. M., Ybert, C., Journet, C., Tabeling, P., & Bocquet, L. (2006). Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Physical Review Letters, 97(15), 156104.

    Article  Google Scholar 

  74. Barthwal, S., Kim, Y. S., & Lim, S. H. (2012). Superhydrophobic and superoleophobic copper plate fabrication using alkaline solution assisted surface oxidation methods. International Journal of Precision Engineering and Manufacturing, 13(8), 1311–1315.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Mid-career Researcher Program (NRF-2019R1A2C2011437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Soo Ko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, K.K., Jung, Y., Park, BG. et al. Super Wear Resistant Nanostructured Superhydrophobic Surface. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1177–1189 (2022). https://doi.org/10.1007/s40684-021-00325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00325-8

Keywords

Navigation