Skip to main content
Log in

Recent Control Technologies for Floating Offshore Wind Energy System: A Review

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This paper presents the recent control technologies being researched for floating offshore wind energy system (FOWES). FOWES has been getting many attentions recently as an alternative energy system utilizing vast sustainable wind resource away from land with little restriction by human societies, artificial and natural obstacles. However, not only due to the harsh environmental conditions such as strong wind, wave, and current, but also due to the platform motions such as surge, sway, heave, pitch, roll, and yaw, there could occur many problems including less energy capture than expected, frequent emergency stops, turbine structural instability, and fatigues resulting in early failures, which stay the levelized cost of energy (LCOE) still high compared to conventional fixed offshore wind energy system. These risks could be lowered by operating the turbine close to the optimum point and harvesting wind energy efficiently even under strong wind conditions with the properly applied control technologies, while reducing the loads on structural components. Many researches have been actively going on not only by numerical approaches, but also by experimental tests. This study is wrapping the most recent researches on control technologies for promising floating offshore wind energy system according to different substructure designs such as a spar type, semi-submergible type, tension-leg platform (TLP) type, and barge type, and discusses about its challenges as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Copyright 2016, Elsevier

Fig. 12

Copyright 2016, Elsevier

Fig. 13

Copyright 2016, Elsevier

Fig. 14
Fig. 15

Copyright 2015, Springer Nature

Fig. 16

Copyright 2018, American Institute of Aeronautics and Astronautics, Inc., with permission

Fig. 17

Copyright 2014, IEEE

Fig. 18

Copyright 2020, Elsevier

Fig. 19

Copyright 2011, Elsevier

Fig. 20

Copyright 2019, Elsevier

Fig. 21

Copyright 2007, IOP Science

Fig. 22

Copyright 2017, Elsevier

Fig. 23

Copyright 2017, Elsevier

Fig. 24

Copyright 2015, Springer

Fig. 25

Copyright 2019, Elsevier

Fig. 26

Copyright 2017, Elsevier

Fig. 27

Copyright 2014, IEEE

Fig. 28
Fig. 29

Copyright 2014, Hindawi

Fig. 30

Copyright 2020, IEEE

Fig. 31
Fig. 32

Copyright 2018, Techno-Press

Fig. 33

Copyright 2019, John Wiley & Sons, Ltd

Fig. 34

Copyright 2020, Elsevier

Similar content being viewed by others

Abbreviations

OWT:

Offshore wind turbine

FOWT:

Floating offshore wind turbine

WTG:

Wind turbine generator

RNA:

Rotor-nacelle assembly

LCOE:

Levelized cost of energy

OPEX:

Operating expenditure

CAPEX:

Capital expenditure

MPPT:

Maximum power point tracking

IPC:

Individual pitch control

CPC:

Collective pitch control

References

  1. Musial, W. et al. (2018). U.S. Department of Energy. 2018 Offshore Wind Technologies Market Report

  2. Castro-Santos, L., Filgueira, A., Alvarez, J., & Carral, L. (2018). Influence of size on the economic feasibility of floating offshore wind farms. Sustainability, 10, 4484. https://doi.org/10.3390/su10124484.

    Article  Google Scholar 

  3. Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., et al. (2016). Expert elicitation survey on future wind energy costs. Nature Energy., 1, 16135. https://doi.org/10.1038/nenergy.2016.135.

    Article  Google Scholar 

  4. Wehrmann, B. (2018). Offshore wind power in Germany: Power production at sea re-emerges as Energiewende cornerstone, Clean Energy Wire, https://www.cleanenergywire.org/dossiers/offshore-wind-power-germany, May 4, 2018.

  5. Betz, A. (1926). Windenergie und Ihre Ausnutzung durch Windmullen. Vandenhoeck and Ruprecht Gottingen

  6. Lawrence Berkeley National Laboratory. (2019). “R&D Pathways for supersized wind turbine blades”, DNVGL, Document No.: 10080081-HOU-R-01, March 2019.

  7. Ha, K., Bätge, M., Melcher, D., & Czichon, S. (2020). Development and feasibility study of segment blade test methodology. Wind Energy Science, 5(2), 591–599. https://doi.org/10.5194/wes-5-591-2020.

    Article  Google Scholar 

  8. Bladena. (2019). “Wind turbine blades handbook”, Kirt &Thomsen, ISBN 978-87-971709-0-8.

  9. Brondsted, P., & Nijssen, R. P. (2013). Advances in wind turbine blade design and materials. UK: Woodhead Publishing Series in Energy.

    Book  Google Scholar 

  10. Zhu, W. J., Shen, W. Z., & Sørensen, J. N. (2014). Integrated airfoil and blade design method for large wind turbines. Renewable Energy, 70, 172–183. https://doi.org/10.1016/j.renene.2014.02.057.

    Article  Google Scholar 

  11. Bertagnolio, F., Sørensen, N.N., Johansen, J., & Fuglsang, P. (2001). “Wind turbine airfoil catalogue”, Denmark. Forskningscenter Risoe, Risoe-R. No. 1280(EN).

  12. Grasso, F. (2012). Development of thick airfoils for wind turbines. Presented at 50th AIAA Aerospace Sciences Meeting. AIAA2012-0236.

  13. WindEurope. (2019). Offshore wind in Europe: Key trends and statistics 2018. https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Offshore-Statistics-2018.pdf.

  14. Global Wind Energy Council. (2020). Global wind report 2019. https://gwec.net/global-wind-report-2019/.

  15. Konstantinidis, E. I., & Botsaris, P. N. (2016). Wind turbines: Current status, obstacles, trends, and technologies. IOP Conference Series: Materials Science and Engineering.. https://doi.org/10.1088/1757-899X/161/1/012079.

    Article  Google Scholar 

  16. Wehrmann, B. (2020). German offshore wind power—Output, business, and perspectives, Clean Energy Wire, https://www.cleanenergywire.org/factsheets/german-offshore-wind-power-output-business-and-perspectives. April 17, 2020.

  17. Sirnivas, S., Musial, W., Bailey, B., & Filippelli, M. (2014). Assessment of offshore wind system design, safety, and operation standards. NREL/TP-5000-60573, National Renewable Energy Laboratory.

  18. Teh, N. (2019). Japan & South Korea Floating Offshore Wind 2019, Innovate UK Global Expert Mission.

  19. Statoil, Hywind Scotland Pilot Park: Environmental Statement, Document number: A-100142-S35-EIAS-001, April 2015.

  20. IRENA. (2016). Floating foundations: A game changer for offshore wind power. Abu Dhabi: International Renewable Energy Agency.

    Google Scholar 

  21. IRENA. (2019). Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper). Abu Dhabi: International Renewable Energy Agency.

    Google Scholar 

  22. Nguyen, H., & Naidu, D. (2013). Evolution of Wind Turbine Control Systems. In Encyclopedia of control systems, robotics, and automation (pp. 1–50). Oxford, UK: EOLSS Publishers.

    Google Scholar 

  23. Jonkman, J. M. (2009). Dynamics of offshore floating wind turbines—model development and verification. Wind Energy, 12, 5. https://doi.org/10.1002/we.347.

    Article  Google Scholar 

  24. Erdozain, J.O., Elorza, I., Calleja, C., Jugo, J., & Pujana-Arrese, A. (2017). Advanced control for floating offshore wind turbine. Ikerlan: The III Marine Energy Week.

  25. Manwell, J. F., et al. (2002). Wind energy explained: Theory, design and applications. USA: Wiley. Chapter 3.

    Book  Google Scholar 

  26. Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook (2nd ed.). USA: Wiley. https://doi.org/10.1002/9781119992714.

    Book  Google Scholar 

  27. Hau, E., & Turbines, W. (2013). Fundamentals, technologies, application, economics. Berlin: Springer.

    Google Scholar 

  28. Mahmoud, M.S., & Xia, Y. (2012). Some industrial systems. In: Applied control systems design, chapter 2, London: Springer.

  29. Damiani, R., et al. (2016). A comparison study of offshore wind support structures with monopiles and jackets for US waters. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/753/9/092003092003.

    Article  Google Scholar 

  30. Van-der-Valk, P. (2014). Coupled simulations of wind turbines and offshore support structures: Strategies based on the dynamic substructuring paradigm. Doctoral thesis. https://doi.org/10.4233/uuid:ac619319-9eae-443d-8b94-d0246f80ffdb. https://repository.tudelft.nl/islandora/object/uuid%3Aac619319-9eae-443d-8b94-d0246f80ffdb.

  31. DNVGL, DNVGL-ST-0119: Floating wind turbine structures, DNV GL AS, July 2018.

  32. Sarmiento, J., & Guanche, R. (2018). Day 1: Introduction to Offshore Wind Fixed Structures. Short course. In Hydrodynamics of fixed and floating Offshore Wind Turbine Foundations. MaRINET2, Short-Course 3, 20-22 November 2018. The Netherlands: Wageningen.

  33. Faltinsen, O. M. (1990). Sea loads on ships and offshore structures. Cambridge: Cambridge University Press.

    Google Scholar 

  34. Jonkman, J. (2007). Dynamics modeling and loads analysis of an offshore floating wind turbine. NREL/TP-500-41958. Golden, CO: National Renewable Energy Laboratory, November 2007.

  35. Yu, L., Bhattacharya, S., Li, L., & Guo, Z. (2014). Dynamic characteristics of offshore wind turbines on different types of foundations. Electronic Journal of Geotechnical Engineering, 19, 2917–2936.

    Google Scholar 

  36. Tempel, J., Diepeveen, N., de Vries, W., & Salzmann, D. (2011). Offshore environmental loads and wind turbine design: Impact of wind, wave, currents, and ice (pp. 463–478). https://doi.org/10.1533/9780857090638.4.463.

  37. Bai, Y., & Jin, W.-L. (2016). Loads and dynamic response for offshore structures. https://linkinghub.elsevier.com/retrieve/pii/B9780080999975000071.

  38. Leimeister, M., Kolios, A., & Collu, M. (2018). Critical review of floating support structures for offshore wind farm deployment. IOP Conference Series, 1104(2018), 012007. https://doi.org/10.1088/1742-6596/1104/1/012007.

    Article  Google Scholar 

  39. Bianchi, F. D., de Battista, H., & Mantz, R. J. (2007). Wind turbine control systems: Principles, modelling and gain scheduling design. London: Springer-Verlag.

    Book  Google Scholar 

  40. Lucy, Y. P., & Kathryn, E. J. (2011). Control of wind turbines: Approaches, challenges, and recent developments. IEEE Control Systems Magazine. https://doi.org/10.1109/MCS.2010.939962.

    Article  MathSciNet  MATH  Google Scholar 

  41. Novaes Menezes, E. J., Araújo, A. M., & Bouchonneau da Silva, N. S. (2018). A review on wind turbine control and its associated methods. Journal of Cleaner Production, 174, 945–953. https://doi.org/10.1016/j.jclepro.2017.10.297.

    Article  Google Scholar 

  42. Kumar, D., & Chatterjee, K. (2016). A review of conventional and advanced MPPT algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, 55, 957–970. https://doi.org/10.1016/j.rser.2015.11.013.

    Article  Google Scholar 

  43. Chatterjee, S., & Chatterjee, S. (2018). Review on the techno-commercial aspects of wind energy conversion system. IET Renewable Power Generation, 12(14), 1581–1608. https://doi.org/10.1049/iet-rpg.2018.5197.

    Article  Google Scholar 

  44. Tiwari, R., & Babu, N. R. (2016). Recent developments of control strategies for wind energy conversion system. Renewable and Sustainable Energy Reviews, 66, 268–285. https://doi.org/10.1016/j.rser.2016.08.005.

    Article  Google Scholar 

  45. Do, H. T., Dang, T. D., Truong, H. V. A., & Ahn, K. K. (2018). Maximum power point tracking and output power control on pressure coupling wind energy conversion system. IEEE Transactions on Industrial Electronics, 65(2), 1316–1324. https://doi.org/10.1109/tie.2017.2733424.

    Article  Google Scholar 

  46. Nguyen, M. T., Dang, T. D., & Ahn, K. K. (2019). Application of electro-hydraulic actuator system to control continuously variable transmission in wind energy converter. Energies, 12(13), 2499. https://doi.org/10.3390/en12132499.

    Article  Google Scholar 

  47. Luo, X., & Niu, S. (2017). A novel contra-rotating power split transmission system for wind power generation and its dual mppt control strategy. IEEE Transactions on Power Electronics, 32(9), 6924–6935. https://doi.org/10.1109/tpel.2016.2629021.

    Article  Google Scholar 

  48. Yin, X.-X., Lin, Y.-G., Li, W., & Gu, H.-G. (2016). Hydro-viscous transmission based maximum power extraction control for continuously variable speed wind turbine with enhanced efficiency. Renewable Energy, 87, 646–655. https://doi.org/10.1016/j.renene.2015.10.032.

    Article  Google Scholar 

  49. Wei, L., Liu, Z., Zhao, Y., Wang, G., & Tao, Y. (2018). Modeling and control of a 600 kW closed hydraulic wind turbine with an energy storage system. Applied Sciences, 8(8), 1314. https://doi.org/10.3390/app8081314.

    Article  Google Scholar 

  50. Petković, D., Ćojbašić, Ž., Nikolić, V., Shamshirband, S., Mat Kiah, M. L., Anuar, N. B., et al. (2014). Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission. Energy, 64, 868–874. https://doi.org/10.1016/j.energy.2013.10.094.

    Article  Google Scholar 

  51. Yin, X.-X., Lin, Y.-G., & Li, W. (2015). Operating modes and control strategy for megawatt-scale hydro-viscous transmission-based continuously variable speed wind turbines. IEEE Transactions on Sustainable Energy, 6(4), 1553–1564. https://doi.org/10.1109/tste.2015.2455872.

    Article  Google Scholar 

  52. Kim, K., Kim, H.-G., Kim, C.-J., Paek, I., Bottasso, C. L., & Campagnolo, F. (2018). Design and validation of demanded power point tracking control algorithm of wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 387–400. https://doi.org/10.1007/s40684-018-0041-6.

    Article  Google Scholar 

  53. Kim, K., Kim, H., Paek, I., Kim, H.-G., & Son, J. (2019). Field validation of demanded power point tracking control algorithm for medium-capacity wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(5), 875–881. https://doi.org/10.1007/s40684-019-00107-3.

    Article  Google Scholar 

  54. Yin, X., Tong, X., Zhao, X., & Karcanias, A. (2020). Maximum power generation control of a hybrid wind turbine transmission system based on H∞ loop-shaping approach. IEEE Transactions on Sustainable Energy, 11(2), 561–570. https://doi.org/10.1109/tste.2019.2897549.

    Article  Google Scholar 

  55. Yin, X.-X., Lin, Y.-G., Li, W., Gu, Y.-J., Liu, H.-W., & Lei, P.-F. (2015). A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics. Energy, 85, 677–686. https://doi.org/10.1016/j.energy.2015.04.005.

    Article  Google Scholar 

  56. Yin, X.-X., Lin, Y.-G., Li, W., Liu, H.-W., & Gu, Y.-J. (2014). Output power control for hydro-viscous transmission based continuously variable speed wind turbine. Renewable Energy, 72, 395–405. https://doi.org/10.1016/j.renene.2014.07.010.

    Article  Google Scholar 

  57. Yin, X., Jiang, Z., & Pan, L. (2020). Recurrent neural network based adaptive integral sliding mode power maximization control for wind power systems. Renewable Energy, 145, 1149–1157. https://doi.org/10.1016/j.renene.2018.12.098.

    Article  Google Scholar 

  58. Navarrete, E. C., Trejo Perea, M., Jauregui Correa, J. C., Carrillo Serrano, R. V., & Moreno, G. J. R. (2019). Expert control systems implemented in a pitch control of wind turbine: A review. IEEE Access, 7, 13241–13259. https://doi.org/10.1109/access.2019.2892728.

    Article  Google Scholar 

  59. Pelin, R. I., Bârsănescu, P. D., & Tiţa, I. (2018). Hydraulic systems used for pitch control of wind turbines: a literature overview. IOP Conference Series: Materials Science and Engineering, 444(4), 042013.

    Article  Google Scholar 

  60. Li, Y., Liu, S., Wang, J., Zhang, H., & Lu, Z. (2009). Design of control system for wind turbine electric pitch. 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, Hunan, pp. 50–53, https://doi.org/10.1109/ICMTMA.2009.29.

  61. Song, D., Yang, J., Su, M., Liu, A., Cai, Z., Liu, Y., et al. (2017). A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation. Energy, 138, 816–830. https://doi.org/10.1016/j.energy.2017.07.033.

    Article  Google Scholar 

  62. Yin, X.-X., Lin, Y.-G., Li, W., Gu, Y.-J., Wang, X.-J., & Lei, P.-F. (2015). Design, modeling and implementation of a novel pitch angle control system for wind turbine. Renewable Energy, 81, 599–608. https://doi.org/10.1016/j.renene.2015.03.042.

    Article  Google Scholar 

  63. Zhang, Y., Cheng, M., & Chen, Z. (2013). Proportional resonant individual pitch control for mitigation of wind turbines loads. IET Renewable Power Generation, 7(3), 191–200. https://doi.org/10.1049/iet-rpg.2012.0282.

    Article  Google Scholar 

  64. Bossanyi, E. A. (2003). Individual blade pitch control for load reduction. Wind Energy, 6(2), 119–128. https://doi.org/10.1002/we.76.

    Article  Google Scholar 

  65. Yuan, Y., Chen, X., & Tang, J. (2020). Multivariable robust blade pitch control design to reject periodic loads on wind turbines. Renewable Energy, 146, 329–341. https://doi.org/10.1016/j.renene.2019.06.136.

    Article  Google Scholar 

  66. Liew, J., Lio, W. H., Urbán, A. M., Holierhoek, J., & Kim, T. (2020). Active tip deflection control for wind turbines. Renewable Energy, 149, 445–454. https://doi.org/10.1016/j.renene.2019.12.036.

    Article  Google Scholar 

  67. Venkaiah, P., & Sarkar, B. K. (2020). Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller. Renewable Energy, 147, 55–68. https://doi.org/10.1016/j.renene.2019.08.127.

    Article  Google Scholar 

  68. Wang, C.-S., & Chiang, M.-H. (2016). A novel pitch control system of a large wind turbine using two-degree-of-freedom motion control with feedback linearization control. Energies, 9(10), 791. https://doi.org/10.3390/en9100791.

    Article  Google Scholar 

  69. Chiang, M.-H. (2011). A novel pitch control system for a wind turbine driven by a variable-speed pump-controlled hydraulic servo system. Mechatronics, 21(4), 753–761. https://doi.org/10.1016/j.mechatronics.2011.01.003.

    Article  Google Scholar 

  70. Yin, X. X., Lin, Y. G., Li, W., Liu, H. W., & Gu, Y. J. (2015). Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines. ISA Transactions, 58, 629–634. https://doi.org/10.1016/j.isatra.2015.07.006.

    Article  Google Scholar 

  71. Yin, X.-X., Lin, Y.-G., Li, W., & Gu, Y.-J. (2014). Integrated pitch control for wind turbine based on a novel pitch control system. Journal of Renewable and Sustainable Energy, 6(4), 043106. https://doi.org/10.1063/1.4890566.

    Article  Google Scholar 

  72. Yin, X.-X., Lin, Y.-G., Li, W., Gu, Y.-J., Lei, P.-F., & Liu, H.-W. (2015). Adaptive back-stepping pitch angle control for wind turbine based on a new electro-hydraulic pitch system. International Journal of Control, 88(11), 2316–2326. https://doi.org/10.1080/00207179.2015.1041554.

    Article  MathSciNet  MATH  Google Scholar 

  73. Yin, X., Zhang, W., Jiang, Z., & Pan, L. (2019). Adaptive robust integral sliding mode pitch angle control of an electro-hydraulic servo pitch system for wind turbine. Mechanical Systems and Signal Processing, 133, https://doi.org/10.1016/j.ymssp.2018.09.026.

    Article  Google Scholar 

  74. Colombo, L., Corradini, M. L., Ippoliti, G., & Orlando, G. (2020). Pitch angle control of a wind turbine operating above the rated wind speed: A sliding mode control approach. ISA Transactions, 96, 95–102. https://doi.org/10.1016/j.isatra.2019.07.002.

    Article  Google Scholar 

  75. Yin, X.-X., Lin, Y.-G., Li, W., Liu, H.-W., & Gu, Y.-J. (2015). Fuzzy-logic sliding-mode control strategy for extracting maximum wind power. IEEE Transactions on Energy Conversion, 30(4), 1267–1278. https://doi.org/10.1109/tec.2015.2422211.

    Article  Google Scholar 

  76. Han, B., Yang, F., Xiang, Z., & Zhou, L. (2016). Individual pitch controller based on fuzzy logic control for wind turbine load mitigation. IET Renewable Power Generation, 10(5), 687–693. https://doi.org/10.1049/iet-rpg.2015.0320.

    Article  Google Scholar 

  77. Yin, X.-X., Lin, Y.-G., & Li, W. (2016). Predictive pitch control of an electro-hydraulic digital pitch system for wind turbines based on the extreme learning machine. Transactions of the Institute of Measurement and Control, 38(11), 1392–1400. https://doi.org/10.1177/0142331215589610.

    Article  Google Scholar 

  78. Lackner, M. A., & van Kuik, G. (2010). A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control. Wind Energy, 13(2–3), 117–134. https://doi.org/10.1002/we.353.

    Article  Google Scholar 

  79. https://questfwe.com/documentation-center/moorings/.

  80. Bagherieh, O., & Nagamune, R. (2015). Gain-scheduling control of a floating offshore wind turbine above rated wind speed. Control Theory and Technology, 13(2), 160–172. https://doi.org/10.1007/s11768-015-4152-0.

    Article  Google Scholar 

  81. Namik, H., & Stol K. (2009). Control methods for reducing platform pitching motion of floating wind turbines. 2009 European offshore wind, Stockholm

  82. Namik, H., & Stol, K. (2009). Disturbance accommodating control of floating offshore wind turbines. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida.

  83. Namik, H., & Stol, K. (2010). Individual blade pitch control of floating offshore wind turbines. Wind Energy., 13, 74–85. https://doi.org/10.1002/we.332.

    Article  Google Scholar 

  84. Namik, H., Stol, K., & Jonkman, J. (2008). State-space control of tower motion for deepwater floating offshore wind turbines. 46th AIAA Aerospace Sciences Meeting and Exhibit.

  85. Betti, G., Farina, M., Guagliardi, G. A., Marzorati, A., & Scattolini, R. (2014). Development of a control-oriented model of floating wind turbines. IEEE Transactions on Control Systems Technology, 22(1), 69–82. https://doi.org/10.1109/tcst.2013.2242073.

    Article  Google Scholar 

  86. Laugesen, R., & Hansen, A. M. (2015). Experimental study of the dynamic response of the DTU 10 MW wind turbine on a tension leg platform, Master’s thesis, Department of Wind Energy, Technical University of Denmark, DK2800 Lyngby, 2015. Denmark DTU Wind Energy -0065, Master Thesis Report.

  87. Madsen, F. J., Nielsen, T. R. L., Kim, T., Bredmose, H., Pegalajar-Jurado, A., Mikkelsen, R. F., et al. (2020). Experimental analysis of the scaled DTU10MW TLP floating wind turbine with different control strategies. Renewable Energy, 155, 330–346. https://doi.org/10.1016/j.renene.2020.03.145.

    Article  Google Scholar 

  88. Namik, H., & Stol, K. (2010). Individual blade pitch control of a floating offshore wind turbine on a tension leg platform. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010

  89. Namik, H., & Stol, K. (2011). Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms. Mechatronics, 21(4), 691–703. https://doi.org/10.1016/j.mechatronics.2010.12.003.

    Article  Google Scholar 

  90. Zhang, M., Yang, H., & Xu, J. (2017). Numerical investigation of azimuth dependent smart rotor control on a large-scale offshore wind turbine. Renewable Energy, 105, 248–256. https://doi.org/10.1016/j.renene.2016.12.063.

    Article  Google Scholar 

  91. Zhang, M., Li, X., & Xu, J. (2019). Smart control of fatigue loads on a floating wind turbine with a tension-leg-platform. Renewable Energy, 134, 745–756. https://doi.org/10.1016/j.renene.2018.11.079.

    Article  Google Scholar 

  92. Larsen, T. J., & Hanson, T. D. (2007). A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. Journal of Physics: Conference Series, 75, https://doi.org/10.1088/1742-6596/75/1/012073.

    Article  Google Scholar 

  93. Ma, Z., Li, W., Ren, N., & Ou, J. (2017). The typhoon effect on the aerodynamic performance of a floating offshore wind turbine. Journal of Ocean Engineering and Science, 2(4), 279–287. https://doi.org/10.1016/j.joes.2017.09.004.

    Article  Google Scholar 

  94. Fischer, B. (2013). Reducing rotor speed variations of floating wind turbines by compensation of non-minimum phase zeros. IET Renewable Power Generation, 7(4), 413–419. https://doi.org/10.1049/iet-rpg.2012.0263.

    Article  Google Scholar 

  95. Wakui, T., Yoshimura, M., & Yokoyama, R. (2017). Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system. Energy, 141, 563–578. https://doi.org/10.1016/j.energy.2017.09.100.

    Article  Google Scholar 

  96. Oh, Y., Kim, K., Kim, H., & Paek, I. (2015). Control algorithm of a floating wind turbine for reduction of tower loads and power fluctuation. International Journal of Precision Engineering and Manufacturing, 16(9), 2041–2048. https://doi.org/10.1007/s12541-015-0265-0.

    Article  Google Scholar 

  97. Zhu, H., Sueyoshi, M., Hu, C., & Yoshida, S. (2019). A study on a floating type shrouded wind turbine: Design, modeling and analysis. Renewable Energy, 134, 1099–1113. https://doi.org/10.1016/j.renene.2018.09.028.

    Article  Google Scholar 

  98. Yuan, Y., & Tang, J. (2017). Adaptive pitch control of wind turbine for load mitigation under structural uncertainties. Renewable Energy, 105, 483–494. https://doi.org/10.1016/j.renene.2016.12.068.

    Article  Google Scholar 

  99. Namik, H., & Stol, K. (2014). Individual blade pitch control of a spar-buoy floating wind turbine. IEEE Transactions on Control Systems Technology, 22(1), 214–223. https://doi.org/10.1109/tcst.2013.2251636.

    Article  Google Scholar 

  100. Chaaban, R., & Fritzen, C-P. (2014). Reducing blade fatigue and damping platform motions of floating wind turbines using model predictive control. Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014.

  101. Raach, S., Schlipf, D., Sandner, F., Matha, D., & Cheng, P.W. (2014). Nonlinear model predictive control of floating wind turbines with individual pitch control. 2014 American Control Conference, Portland, OR, 2014, pp. 4434–4439, doi: 10.1109/ACC.2014.6858718.

  102. Yang, F., Song, Q.-W., Wang, L., Zuo, S., & Li, S.-S. (2014). Wind and wave disturbances compensation to floating offshore wind turbine using improved individual pitch control based on fuzzy control strategy. Abstract and Applied Analysis, 2014, 1–10. https://doi.org/10.1155/2014/968384.

    Article  MATH  Google Scholar 

  103. Sarkar, S., Fitzgerald, B., & Basu, B. (2020). Individual blade pitch control of floating offshore wind turbines for load mitigation and power regulation. IEEE Transactions on Control Systems Technology. https://doi.org/10.1109/tcst.2020.2975148.

    Article  Google Scholar 

  104. Yu, W., Lemmer, F., Bredmose, H., Borg, M., Pegalajar-Jurado, A., Mikkelsen, R. F., et al. (2017). The TripleSpar Campaign: Implementation and test of a blade pitch controller on a scaled floating wind turbine model. Energy Procedia, 137, 323–338. https://doi.org/10.1016/j.egypro.2017.10.357.

    Article  Google Scholar 

  105. Goupee, A. J., Kimball, R. W., & Dagher, H. J. (2017). Experimental observations of active blade pitch and generator control influence on floating wind turbine response. Renewable Energy, 104, 9–19. https://doi.org/10.1016/j.renene.2016.11.062.

    Article  Google Scholar 

  106. Kim, H. C., & Kim, M. H. (2018). The effects of blade-pitch control on the performance of semi-submersible-type floating offshore wind turbines. Ocean Systems Engineering, 8, 79–99. https://doi.org/10.12989/ose.2018.8.1.079.

    Article  Google Scholar 

  107. Lemmer, F., Yu, W., Schlipf, D., & Cheng, P. W. (2019). Robust gain scheduling baseline controller for floating offshore wind turbines. Wind Energy, 23(1), 17–30. https://doi.org/10.1002/we.2408.

    Article  Google Scholar 

  108. Han, C., & Nagamune, R. (2020). Platform position control of floating wind turbines using aerodynamic force. Renewable Energy, 151, 896–907. https://doi.org/10.1016/j.renene.2019.11.079.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2019H1D3A2A02102093) and by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the MSIT(2020R1A2B5B03001480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Kwan Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, K., Truong, H.V.A., Dang, T.D. et al. Recent Control Technologies for Floating Offshore Wind Energy System: A Review. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 281–301 (2021). https://doi.org/10.1007/s40684-020-00269-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00269-5

Keywords

Navigation