Skip to main content

Advertisement

Log in

Experimental Assessment of the Power Conversion of a Wave Energy Converter Using Hydraulic Power Take-Off Mechanism

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The hydraulic power take-off (HPTO) is considered as the most promising method to convert wave power to electrical power. This paper presents an experimental assessment of the power conversion of a wave energy converter using HPTO. Based on the experimental results, a modification of accumulator pre-charged pressure and a control strategy were proposed to improve the system performance. System design, the working principle and mathematical model of all components were described. The proposed method was verified based on both simulation and experimental tests. The results showed that the system always works at an optimal condition under different input wave conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Johannes, F. (2007). A review of wave-energy extraction. Marine Structures, 20, 185–201.

    Article  Google Scholar 

  2. Drew, B., Plummer, A. R., & Sahinkaya, M. N. (2009). A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223, 887–902.

    Article  Google Scholar 

  3. Falcão, A. F. O. (2010). Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899–918.

    Article  Google Scholar 

  4. Iraide, L., Jon, A., Salvador, C., de Iñigo Martínez, A., & Iñigo, K. (2013). Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews, 27, 413–434.

    Article  Google Scholar 

  5. Silvia, B., Adrià Moreno, M., Alessandro, A., Giuseppe, P., & Renata, A. (2013). Modeling of a point absorber for energy conversion in Italian seas. Energies, 6, 3033–3051.

    Article  Google Scholar 

  6. Jusoh, M. A., Ibrahim, M. Z., Daud, M. Z., Albani, A., & Yusop, Z. M. (2019). Hydraulic power take-off concepts for wave energy conversion system: A review. Energies, 12, 4510.

    Article  Google Scholar 

  7. Binh, P. C., Tri, N. M., Dung, D. T., Ahn, K. K., Kim, S. J., & Koo, W. (2016). Analysis, design and experiment investigation of a novel wave energy converter. IET Generation, Transmission and Distribution, 10, 460–469.

    Article  Google Scholar 

  8. Dang, T. D., Nguyen, M. T., Phan, C. B., & Ahn, K. K. (2019). Development of a wave energy converter with mechanical power take-off via supplementary inertia control. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 497–509.

    Article  Google Scholar 

  9. Dang, T. D., Phan, C. B., & Ahn, K. K. (2019). Design and Investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 477–488.

    Article  Google Scholar 

  10. Dang, T. D., Phan, C. B., & Ahn, K. K. (2019). Modeling and experimental investigation on performance of a wave energy converter with mechanical power take-off. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 751–768.

    Article  Google Scholar 

  11. Tri, N. M., Binh, P. C., & Ahn, K. K. (2018). Power take-off system based on continuously variable transmission configuration for wave energy converter. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 89–101.

    Article  Google Scholar 

  12. Ocean power technologies. https://www.oceanpowertechnologies.com. Accessed 2015.

  13. Wave Star Energy. https://www.wavestarenergy.com. Accessed 2015

  14. Choi, K. S., Yang, D. S., Park, S. Y., & Cho, B. H. (2012). Design and performance test of hydraulic PTO for wave energy converter. International Journal of Precision Engineering and Manufacturing, 13(5), 795–801.

    Article  Google Scholar 

  15. Falcão, A. F. O. (2017). Modeling and control of oscillating-body wave energy converters with hydraulic power take-off and gas accumulator. Ocean Engineering, 34, 2021–2032.

    Article  Google Scholar 

  16. Ricci, P., Lopez, J., Santos, M., Ruiz-Minguela, P., Villate, J. L., Salcedo, F., et al. (2011). Control strategies for a wave energy converter connected to a hydraulic power takeoff. IET Renew Power Generation, 5, 234–244.

    Article  Google Scholar 

  17. Joseba, L., Juan, C. A., Carlos, A., Patxi, E., Maider, S., & Pierpaolo, R. (2012). Design, construction and testing of a hydraulic power take-off for wave energy converters. Energies, 5, 2030–2052.

    Article  Google Scholar 

  18. Do, H. T., Dinh, Q. T., Nguyen, M. T., Phan, C. B., Dang, T. D., et al. (2015). Effects of non-vertical linear motions of a hemispherical float wave energy converter. Ocean Engineering, 109, 430–438.

    Article  Google Scholar 

  19. Do, H. T., Dinh, Q. T., Nguyen, M. T., Phan, C. B., Dang, T. D., et al. (2017). Proposition and experiment of a sliding angle self-tuning wave energy converter. Ocean Engineering, 132, 1–10.

    Article  Google Scholar 

  20. Tri, N. M., Truong, D. Q., Binh, P. C., Dung, D. T., Lee, S., et al. (2016). A Novel control method to maximize the energy-harvesting capability of an adjustable slope angle wave energy converter. Renewable Energy, 97, 518–531.

    Article  Google Scholar 

  21. Do, H. T., Dang, T. D., & Ahn, K. K. (2018). A multi-point-absorber wave-energy converter for the stabilization of output power. Ocean Engineering, 161, 337–349.

    Article  Google Scholar 

  22. Ahn, K. K., Truong, D. Q., Tien, H. H., & Yoon, J. I. (2012). An innovative design of wave energy converter. Renewable Energy, 42, 186–194.

    Article  Google Scholar 

  23. Truong, D. Q., & Ahn, K. K. (2014). Development of a novel point absorber in heave for wave energy conversion. Renewable Energy, 65, 183–191.

    Article  Google Scholar 

  24. Cargo, C. J., Hillis, A. J., & Plummer, A. R. (2014). Optimisation and control of a hydraulic power take-off unit for a wave energy converter in irregular waves. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 228, 462–479.

    Google Scholar 

  25. Cargo, C. J., Plummer, A. R., Hillis, A. J., & Schlotter, M. (2012). Determination of optimal parameters for a hydraulic power take-off unit of a wave energy converter in regular waves. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226, 98–111.

    Google Scholar 

  26. Cargo, C. J., Hillis, A. J., & Plummer, A. R. (2016). Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms. Renewable Energy, 94, 32–47.

    Article  Google Scholar 

  27. Truong, D. Q., & Ahn, K. K. (2012). Wave prediction based on a modified grey model MGM(1,1) for real-time control of wave energy converters in irregular waves. Renewable Energy, 43, 242–255.

    Article  Google Scholar 

  28. Falnes, J. (2002). Ocean waves and oscillating systems, linear interaction including wave-energy extraction. Cambridge: Cambridge University.

    Book  Google Scholar 

  29. [Online] WAMIT, Inc version 7.0 user manual. (2015)https://www.wamit.com/manualupdate/history/V70_manual_old.pdf. Accessed 2015

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, South Korea (NRF-2020R1A2B5B03001480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Kwan Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, T.D., Do, T.C. & Ahn, K.K. Experimental Assessment of the Power Conversion of a Wave Energy Converter Using Hydraulic Power Take-Off Mechanism. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1515–1527 (2021). https://doi.org/10.1007/s40684-020-00261-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00261-z

Keywords

Navigation