Skip to main content

Advertisement

Log in

Evaluation of Welding Processes Based on Multi-dimensional Sustainability Assessment Model

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Welding is a widely used manufacturing process that has a significant impact on the sustainability dimensions represented by environmental, economic and social aspects. In this work, a general and comprehensive framework for sustainability assessment of manufacturing processes is applied to select the most sustainable welding process among several alternatives for a certain application. The considered alternatives are friction stir welding (FSW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and shielded metal arc welding (SMAW). The four processes are used to weld two aluminum plates. Relevant sustainability indicators are selected from all sustainability dimensions. A dimension for physical performance of the welded parts is also considered. Entropy weight method is used for assigning weights to the indicators to avoid uncertainties of subjective weighting. Three multi-criteria decision making methods (MCDM) are used for normalization and aggregation of data. The reliability of the results is investigated by conducting sensitivity analysis. The results of the study show that FSW is the most sustainable welding process for this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U. Nations, Report of the World Summit on Sustainable Development. (2002). http://www.un-documents.net/aconf199-20.pdf. (Online). Accessed 14 Feb 2019.

  2. Dornfeld, D. A. (2014). Moving towards green and sustainable manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 63–66. https://doi.org/10.1007/s40684-014-0010-7.

    Article  Google Scholar 

  3. Lee, H.-T., et al. (2019). Research trends in sustainable manufacturing: a review and future perspective based on research databases. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 809–819. https://doi.org/10.1007/s40684-019-00113-5.

    Article  Google Scholar 

  4. Herrmann, C., Schmidt, C., Kurle, D., Blume, S., & Thiede, S. (2014). Sustainability in manufacturing and factories of the future. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 283–292. https://doi.org/10.1007/s40684-014-0034-z.

    Article  Google Scholar 

  5. Lee, J. Y., Kang, H. S., & Noh, S. D. (2012). Simulation-based analysis for sustainability of manufacturing system. International Journal of Precision Engineering and Manufacturing, 13(7), 1221–1230. https://doi.org/10.1007/s12541-012-0162-8.

    Article  Google Scholar 

  6. Yoon, H.-S., Kim, M.-S., Jang, K.-H., & Ahn, S.-H. (2016). Future perspectives of sustainable manufacturing and applications based on research databases. International Journal of Precision Engineering and Manufacturing, 17(9), 1249–1263. https://doi.org/10.1007/s12541-016-0150-5.

    Article  Google Scholar 

  7. Jin, Y., & Noh, S. D. (2014). Stochastic model-based framework for assessment of sustainable manufacturing technology. International Journal of Precision Engineering and Manufacturing, 15(3), 519–525. https://doi.org/10.1007/s12541-014-0366-1.

    Article  Google Scholar 

  8. Hapuwatte, B., Seevers, K. D., Badurdeen, F., & Jawahir, I. S. (2016). Total life cycle sustainability analysis of additively manufactured products. Procedia CIRP, 48, 376–381. https://doi.org/10.1016/j.procir.2016.03.016.

    Article  Google Scholar 

  9. Kloepffer, W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89.

    Article  Google Scholar 

  10. Grießhammer R., et al. (2007) PROSA–product sustainability assessment. Beschreibung der Methode. https://www.prosa.org/fileadmin/user_upload/pdf/leitfaden_eng_final_310507.pdf.

  11. Zhang, H., & Haapala, K. R. (2015). Integrating sustainable manufacturing assessment into decision making for a production work cell. Journal of Cleaner Production, 105, 52–63.

    Article  Google Scholar 

  12. Veleva, V., & Ellenbecker, M. (2001). Indicators of sustainable production: framework and methodology. Journal of Cleaner Production, 9(6), 519–549. https://doi.org/10.1016/S0959-6526(01)00010-5.

    Article  Google Scholar 

  13. Hallstedt, S. I. (2017). Sustainability criteria and sustainability compliance index for decision support in product development. Journal of Cleaner production, 140, 251–266.

    Article  Google Scholar 

  14. Chou, C.-J., Chen, C.-W., & Conley, C. (2015). An approach to assessing sustainable product-service systems. Journal of Cleaner Production, 86, 277–284.

    Article  Google Scholar 

  15. Yun, J.-H., Jeong, M.-S., Lee, S.-K., Jeon, J.-W., Park, J.-Y., & Kim, G. M. (2014). Sustainable production of helical pinion gears: Environmental effects and product quality. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 37–41. https://doi.org/10.1007/s40684-014-0006-3.

    Article  Google Scholar 

  16. Meng, Q., Li, F.-Y., Zhou, L.-R., Li, J., Ji, Q.-Q., & Yang, X. (2015). A rapid life cycle assessment method based on green features in supporting conceptual design. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 189–196. https://doi.org/10.1007/s40684-015-0023-x.

    Article  Google Scholar 

  17. Chiu, M.-C., & Chu, C.-H. (2012). Review of sustainable product design from life cycle perspectives. International Journal of Precision Engineering and Manufacturing, 13(7), 1259–1272. https://doi.org/10.1007/s12541-012-0169-1.

    Article  Google Scholar 

  18. Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2016). An assessment of sustainability for turning process in an automobile firm. Procedia CIRP, 48, 538–543. https://doi.org/10.1016/j.procir.2016.03.024.

    Article  Google Scholar 

  19. Linke, B. S., Corman, G. J., Dornfeld, D. A., & Tönissen, S. (2013). Sustainability indicators for discrete manufacturing processes applied to grinding technology,”. Journal of Manufacturing Systems, 32(4), 556–563. https://doi.org/10.1016/j.jmsy.2013.05.005.

    Article  Google Scholar 

  20. Lu, T., et al. (2012). Metrics-based sustainability assessment of a drilling process. In G. Seliger (Ed.), Sustainable manufacturing: shaping global value creation (pp. 59–64). Heidelberg: Springer.

    Chapter  Google Scholar 

  21. Lu, T., & Jawahir, I. S. (2015). Metrics-based sustainability evaluation of cryogenic machining. Procedia CIRP, 29, 520–525. https://doi.org/10.1016/j.procir.2015.02.067.

    Article  Google Scholar 

  22. Hegab, H. A., Darras, B., & Kishawy, H. A. (2018). Towards sustainability assessment of machining processes. Journal of Cleaner Production, 170(Supplement C), 694–703. https://doi.org/10.1016/j.jclepro.2017.09.197.

    Article  Google Scholar 

  23. Hegab, H., Darras, B., & Kishawy, H. (2018). Sustainability assessment of machining with nano-cutting fluids. Procedia Manufacturing, 26, 245–254.

    Article  Google Scholar 

  24. Faga, M. G., Priarone, P. C., Robiglio, M., Settineri, L., & Tebaldo, V. (2017). Technological and sustainability implications of dry, near-dry, and wet turning of Ti-6Al-4V alloy. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 129–139. https://doi.org/10.1007/s40684-017-0016-z.

    Article  Google Scholar 

  25. La Fé Perdomo, I., Quiza, R., Haeseldonckx, D., & Rivas, M. (2019). Sustainability-focused multi-objective optimization of a turning process. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00122-4.

    Article  Google Scholar 

  26. Zia, M. K., Pervaiz, S., Anwar, S., & Samad, W. A. (2019). Reviewing sustainability interpretation of electrical discharge machining process using triple bottom line approach. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(5), 931–945. https://doi.org/10.1007/s40684-019-00043-2.

    Article  Google Scholar 

  27. Schneider, F., Das, J., Kirsch, B., Linke, B., & Aurich, J. C. (2019). Sustainability in ultra precision and micro machining: a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 601–610. https://doi.org/10.1007/s40684-019-00035-2.

    Article  Google Scholar 

  28. D’Urso, G., Giardini, C., & Ravasio, C. (2018). Effects of electrode and workpiece materials on the sustainability of micro-EDM drilling process. International Journal of Precision Engineering and Manufacturing, 19(11), 1727–1734. https://doi.org/10.1007/s12541-018-0200-2.

    Article  Google Scholar 

  29. Chang, Y.-J., et al. (2015). Environmental and social life cycle assessment of welding technologies. Procedia CIRP, 26, 293–298. https://doi.org/10.1016/j.procir.2014.07.084.

    Article  Google Scholar 

  30. Sproesser, G., Chang, Y.-J., Pittner, A., Finkbeiner, M., & Rethmeier, M. (2015). Life cycle assessment of welding technologies for thick metal plate welds. Journal of Cleaner Production, 108, 46–53. https://doi.org/10.1016/j.jclepro.2015.06.121.

    Article  Google Scholar 

  31. Sproesser, G., et al. (2016). Sustainable welding process selection based on weight space partitions. Procedia CIRP, 40, 127–132. https://doi.org/10.1016/j.procir.2016.01.077.

    Article  Google Scholar 

  32. Sangwan, K. S., Herrmann, C., Egede, P., Bhakar, V., & Singer, J. (2016). Life cycle assessment of arc welding and gas welding processes. Procedia CIRP, 48, 62–67. https://doi.org/10.1016/j.procir.2016.03.096.

    Article  Google Scholar 

  33. Vimal, K. E. K., Vinodh, S., & Raja, A. (2015). Modelling, assessment and deployment of strategies for ensuring sustainable shielded metal arc welding process—a case study. Journal of Cleaner Production, 93, 364–377. https://doi.org/10.1016/j.jclepro.2015.01.049.

    Article  Google Scholar 

  34. Alkahla, I., & Pervaiz, S. (2017). Sustainability assessment of shielded metal arc welding (SMAW) process. IOP Conference Series: Materials Science and Engineering, 244(1), 012001. (IOP Publishing).

    Article  Google Scholar 

  35. Bevilacqua, M., Ciarapica, F. E., D’Orazio, A., Forcellese, A., & Simoncini, M. (2017). Sustainability analysis of friction stir welding of AA5754 sheets. Procedia CIRP, 62, 529–534. https://doi.org/10.1016/j.procir.2016.06.081.

    Article  Google Scholar 

  36. Bevilacqua M., Ciarapica F., Forcellese A., Simoncini M. (2019). Comparison among the environmental impact of solid state and fusion welding processes in joining an aluminium alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, p. 0954405419845572.

  37. Shrivastava, A., Krones, M., & Pfefferkorn, F. E. (2015). Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP Journal of Manufacturing Science and Technology, 9, 159–168.

    Article  Google Scholar 

  38. Dawood H. I., Mohammed K. S., & Rajab, M. Y. (2014). Advantages of the green solid state FSW over the conventional GMAW process. Advances in Materials Science and Engineering, 2014.

  39. Saad, M. H., Nazzal, M. A., & Darras, B. M. (2019). A general framework for sustainability assessment of manufacturing processes. Ecological Indicators, 97, 211–224. https://doi.org/10.1016/j.ecolind.2018.09.062.

    Article  Google Scholar 

  40. Kishta, E. E., & Darras, B. (2016). Experimental investigation of underwater friction-stir welding of 5083 marine-grade aluminum alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(3), 458–465.

    Article  Google Scholar 

  41. Narayanan, A., Mathew, C., Baby, V. Y., & Joseph, J. (2013). Influence of gas tungsten arc welding parameters in aluminium 5083 alloy. International Journal of Engineering Science and Innovative Technology, 2(5), 269–277.

    Google Scholar 

  42. Aluminum GMAW. (2016). Gas Metal Arc Welding for Aluminum Guide, The Lincoln Electric Co. https://www.lincolnelectric.com/assets/global/Products/Consumable_AluminumMIGGMAWWires-SuperGlaze-SuperGlaze5356TM/c8100.pdf. (Online). Accessed 8 Dec 2018.

  43. Liu, Y., et al. (2012). Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding. Materials Science and Engineering: A, 549, 7–13. https://doi.org/10.1016/j.msea.2012.03.108.

    Article  Google Scholar 

  44. Nathan, S. R., Balasubramanian, V., Malarvizhi, S., & Rao, A. (2015). Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Defence Technology, 11(3), 308–317.

    Article  Google Scholar 

  45. E. ASTM, 8M. (2003). Standard test methods of tension testing of metallic materials [metric]. Annual book of ASTM standards, vol. 3.

  46. Darras, B. M., Abed, F. H., Pervaiz, S., & Abdu-Latif, A. (2013). Analysis of damage in 5083 aluminum alloy deformed at different strainrates. Materials Science and Engineering: A, 568, 143–149. https://doi.org/10.1016/j.msea.2013.01.039.

    Article  Google Scholar 

  47. Sharma, C., Upadhyay, V., & Tripathi, A. (2015). Engineering and technology Effect of welding processes on tensile behavior of aluminum alloy joints. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9(12), 2051–2054.

    Google Scholar 

  48. Bodukuri, A. K., Eswaraiah, K., & Rajendar, K. (2017). Comparison of aluminum alloy 5083 properties on TIGW and FSW processes. Materials Today: Proceedings, 4(9), 10197–10201. https://doi.org/10.1016/j.matpr.2017.06.347.

    Article  Google Scholar 

  49. Darras, B., & Kishta, E. (2013). Submerged friction stir processing of AZ31 magnesium alloy. Materials and Design, 47, 133–137.

    Article  Google Scholar 

  50. Lakshminarayanan, A., Balasubramanian, V., & Elangovan, K. (2009). Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. The International Journal of Advanced Manufacturing Technology, 40(3–4), 286–296.

    Article  Google Scholar 

  51. ASTM A. (2011). Standard test method for microindentation hardness of materials, ASTM International West Conshohocken.

  52. Arun M.,& Ramachandran K. (2015). Effect of welding process on mechanical and metallurgical properties of AA6061 aluminium alloy lap joint. International Journal of Mechanical Engineering and Research, Research India Publications. 5(1).

  53. Klobčar, D., Kosec, L., Pietras, A., & Smolej, A. (2012). Friction-stir welding of aluminium alloy 5083. Materiali in tehnologije/Materials and technology, 5(46), 483–488.

    Google Scholar 

  54. Darras, B. M., Deiab, I. M., & Naser, A. (2014). Prediction of friction stir processed AZ31 magnesium alloy micro-hardness using artificial neural networks. Advanced Materials Research, 1043, 91–95.

    Article  Google Scholar 

  55. Darras, B., Khraisheh, M., Abu-Farha, F., & Omar, M. (2007). Friction stir processing of commercial AZ31 magnesium alloy. Journal of Materials Processing Technology, 191(1–3), 77–81.

    Article  Google Scholar 

  56. Buffa, G., Campanella, D., Di Lorenzo, R., Fratini, L., & Ingarao, G. (2017). Analysis of electrical energy demands in friction stir welding of aluminum alloys. Procedia Engineering, 183, 206–212. https://doi.org/10.1016/j.proeng.2017.04.022.

    Article  Google Scholar 

  57. E. ASTM. (2008) Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. Standard Test Methods for Rockwell Hardness of Metallic Materials. E18-08a. ASTM, Ed.(2008). Standard Test Methods for Tension Testing of Metallic Materials. E, vol. 8, 2007.

  58. Zou, Z.-H., Yun, Y., & Sun, J.-N. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18(5), 1020–1023. https://doi.org/10.1016/S1001-0742(06)60032-6.

    Article  Google Scholar 

  59. Sustainability Measures; Indicators of Sustainability. (2014). http://www.sustainablemeasures.com/indicators Accessed 2017.

  60. Tan, H. X., Yeo, Z., Ng, R., Tjandra, T. B., & Song, B. (2015). A sustainability indicator framework for singapore small and medium-sized manufacturing enterprises. Procedia CIRP, 29, 132–137. https://doi.org/10.1016/j.procir.2015.01.028.

    Article  Google Scholar 

  61. C. N. C. Fund. My Carbon Calculator. (2014). https://cncf.com.au/carbon-calculator/#electricity Accessed 2018.

  62. Tariff Calculator. (2011). https://www.dewa.gov.ae/en/customer/services/consumption-services/calculator Accessed 2018.

  63. MATHESON. MATHESON 4043 Alloy Stick Wire (GMAW). (2016). https://store.mathesongas.com/4043-alloy-stick-wire-gmaw-tig-choose-box-weight-wire-diameter/. Accessed 2018.

  64. Amazon. Blue Demon E4043 3/32” x 12” 1LB Tube Aluminum Covered Arc Welding Electrode. (2016). https://www.amazon.com/Blue-Demon-Aluminum-Covered-Electrode/dp/B010HWU7N0. Accessed 2018.

  65. Computer Numerically Controlled (CNC) Machinist Salary. (2016). https://www.payscale.com/research/US/Job=Computer_Numerically_Controlled_(CNC)_Machinist/Hourly_Rate. Accessed 2017.

  66. Tig Welder Salary. (2016). https://www.payscale.com/research/US/Job=Tig_Welder/Hourly_Rate. Accessed 2017.

  67. Mig Welder Salary. (2016). https://www.payscale.com/research/US/Job=Mig_Welder/Hourly_Rate. Accessed 2017.

  68. Welder with Shielded Metal Arc Welding (SMAW) Skills Salary. (2016). https://www.payscale.com/research/US/Job=Welder/Hourly_Rate/64dbbe71/Shielded-Metal-Arc-Welding-SMAW. Accessed 2017.

  69. B. o. L. (2016). Statistics, nonfatal occupational injuries and illnesses requiring days away from work, 2013.

  70. Zhao, R., Su, H., Chen, X., & Yu, Y. (2016). Commercially available materials selection in sustainable design: an integrated multi-attribute decision making approach. Sustainability, 8(1), 79.

    Article  Google Scholar 

  71. Kuo, Y., Yang, T., & Huang, G.-W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computers and Industrial Engineering, 55(1), 80–93. https://doi.org/10.1016/j.cie.2007.12.002.

    Article  Google Scholar 

  72. Rao, R. V. (2013). Improved Multiple Attribute Decision Making Methods. In Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods, vol 2. London: Springer London, pp. 7–39.

  73. Jamal J., Darras B., & Kishawy H. (2019). A study on sustainability assessment of welding processes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, p. 0954405419875355.

  74. Yazdani, M., Jahan, A., & Zavadskas, E. (2017). Analysis in material selection: influence of normalization tools on COPRAS-G. Economic Computation and Economic Cybernetics Studies and Research, 51(1), 59–74.

    Google Scholar 

  75. Ishizaka, A., Balkenborg, D., & Kaplan, T. (2011). Influence of aggregation and measurement scale on ranking a compromise alternative in AHP. Journal of the Operational Research Society, 62(4), 700–710.

    Article  Google Scholar 

  76. Çelen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: with an application to Turkish deposit banking market. Informatica, 25(2), 185–208.

    Article  MathSciNet  Google Scholar 

  77. Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32(2), 135–154. https://doi.org/10.1007/bf00547132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil M. Darras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, M.H., Darras, B.M. & Nazzal, M.A. Evaluation of Welding Processes Based on Multi-dimensional Sustainability Assessment Model. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 57–75 (2021). https://doi.org/10.1007/s40684-019-00184-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00184-4

Keywords

Navigation