Skip to main content
Log in

Galvanic Corrosion Assessment of Friction Stir Butt Welded Joint of Aluminum and Steel Alloys

  • Short Communication
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Galvanic corrosion assessment of a friction stir welded (FSWed) joint of 5052-H32 aluminum and dual phase (DP) steel alloys is conducted by coupling the top and bottom surfaces of the weld joint with the base metals (BMs) in the presence of a 3.5% NaCl solution. The complex nature of the stir zone (SZ) causes different microstructures and corresponding corrosion behaviors across the top and bottom surfaces of the FSWed joint. From the results, the regions between the DP steel BM and the FSWed joint have larger average potential differences as well as higher corrosion rates due to an increase in martensite content, low-angle grain boundaries (LAGBs) and the presence of the steel pieces in the SZ. On the other hand, the regions between the aluminum BM and the FSWed joint show better corrosion properties with smaller average potential differences and lower corrosion rates, even though the aluminum BM is significantly affected by the chloride ions present in the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Lee, W., Park, J., & Kim, N. (2019). Analysis of transmission efficiency of a plug-in hybrid vehicle based on operating modes. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00147-9.

    Article  Google Scholar 

  2. Haghshenas, M., & Gerlich, A. P. (2018). Joining of automotive sheet materials by friction-based welding methods: A review. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2018.02.008.

    Article  Google Scholar 

  3. Springer, H., Szczepaniak, A., & Raabe, D. (2015). On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminium alloys. Acta Materialia,96(4), 203–211. https://doi.org/10.1016/j.actamat.2015.06.028.

    Article  Google Scholar 

  4. Hussein, S. A., Tahir, A. S. M., & Hadzley, A. B. (2015). Characteristics of aluminum-to-steel joint made by friction stir welding: A review. Materials Today Communications,5, 32–49. https://doi.org/10.1016/j.mtcomm.2015.09.004.

    Article  Google Scholar 

  5. Cho, H. H., Kang, S. H., Kim, S. H., Oh, K. H., Kim, H. J., Chang, W. S., et al. (2012). Microstructural evolution in friction stir welding of high-strength linepipe steel. Materials and Design,34, 258–267. https://doi.org/10.1016/j.matdes.2011.08.010.

    Article  Google Scholar 

  6. Kim, K.-H., Bang, H.-S., Ro, C.-S., & Bang, H.-S. (2017). Influence of preheating source on mechanical properties and welding residual stress characteristics in ultra thin ferritic stainless steel hybrid friction stir welded joints. International Journal of Precision Engineering and Manufacturing-Green Technology,4(4), 393–400. https://doi.org/10.1007/s40684-017-0044-8.

    Article  Google Scholar 

  7. Cho, H. H., Hong, S. T., Roh, J. H., Choi, H. S., Kang, S. H., Steel, R. J., et al. (2013). Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel. Acta Materialia,61(7), 2649–2661. https://doi.org/10.1016/j.actamat.2013.01.045.

    Article  Google Scholar 

  8. Das, H., Basak, S., Das, G., & Pal, T. K. (2013). Influence of energy induced from processing parameters on the mechanical properties of friction stir welded lap joint of aluminum to coated steel sheet. International Journal of Advanced Manufacturing Technology,64(9–12), 1653–1661. https://doi.org/10.1007/s00170-012-4130-3.

    Article  Google Scholar 

  9. Cho, H.-H., Kim, D.-W., Hong, S.-T., Jeong, Y.-H., Lee, K., Cho, Y.-G., et al. (2015). Three-dimensional numerical model considering phase transformation in friction stir welding of steel. Metallurgical and Materials Transactions A,46(12), 6040–6051. https://doi.org/10.1007/s11661-015-3177-9.

    Article  Google Scholar 

  10. Niu, P. L., Li, W. Y., & Chen, D. L. (2018). Strain hardening behavior and mechanisms of friction stir welded dissimilar joints of aluminum alloys. Materials Letters,231, 68–71. https://doi.org/10.1016/j.matlet.2018.08.009.

    Article  Google Scholar 

  11. Cho, H. H., Han, H. N., Hong, S. T., Park, J. H., Kwon, Y. J., Kim, S. H., et al. (2011). Microstructural analysis of friction stir welded ferritic stainless steel. Materials Science and Engineering A,528(6), 2889–2894. https://doi.org/10.1016/j.msea.2010.12.061.

    Article  Google Scholar 

  12. Das, H., Mondal, M., Hong, S.-T., Chun, D.-M., & Han, H. N. (2018). Joining and fabrication of metal matrix composites by friction stir welding/processing. International Journal of Precision Engineering and Manufacturing-Green Technology,5(1), 151–172. https://doi.org/10.1007/s40684-018-0016-7.

    Article  Google Scholar 

  13. Palit, S. (2018). Recent advances in corrosion science: A critical overview and a deep comprehension. Direct synthesis of metal complexes. Amsterdam: Elsevier Inc. https://doi.org/10.1016/b978-0-12-811061-4.00011-6.

    Book  Google Scholar 

  14. Davis, J. R. (2000). Corrosion: Understanding the basics. Cleveland: ASM International.

    Book  Google Scholar 

  15. Sarvghad-Moghaddam, M., Parvizi, R., Davoodi, A., Haddad-Sabzevar, M., & Imani, A. (2014). Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM-EDS and AFM-SKPFM. Corrosion Science,79, 148–158. https://doi.org/10.1016/j.corsci.2013.10.039.

    Article  Google Scholar 

  16. Thomä, M., Wagner, G., Straß, B., Wolter, B., Benfer, S., & Fürbeth, W. (2017). Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints. Journal of Materials Science and Technology,34(1), 163–172. https://doi.org/10.1016/j.jmst.2017.10.022.

    Article  Google Scholar 

  17. Anaman, S. Y., Cho, H.-H., Das, H., Lee, J.-S., & Hong, S.-T. (2019). Microstructure and mechanical/electrochemical properties of friction stir butt welded joint of dissimilar aluminum and steel alloys. Materials Characterization,154(May), 67–79. https://doi.org/10.1016/j.matchar.2019.05.041.

    Article  Google Scholar 

  18. ASTM. (2010). ASTM G71–81(2009) standard guide for conducting and evaluating galvanic corrosion tests in electrolytes. Annual Book of ASTM Standards. https://doi.org/10.1520/G0071-81R09.

    Article  Google Scholar 

  19. ASTM G82. (2003). Standard guide for development and use of a galvanic series for predicting galvanic corrosion performance. Techniques, 98(Reapproved), 1–7. https://doi.org/10.1520/g0082-98r14.2.

  20. VETTER, K.J. (2013). Electrochemical thermodynamics. In Electrochemical Kinetics (pp. 1–103). Academic Press. https://doi.org/10.1016/b978-1-4832-2936-2.50005-6.

  21. ASTM International, & ASTM. (2010). ASTM G102-89(2010) Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. Annual Book of ASTM Standards, 89(Reapproved 2004), 1–7. https://doi.org/10.1520/g0102-89r10.2.

  22. Vargel, C. (2004). Corrosion of aluminium. Corrosion of Aluminium. https://doi.org/10.1016/B978-0-08-044495-6.X5000-9.

    Article  Google Scholar 

  23. Abbass, P. M. K., Prof, A., Anaee, R. A., & Jabar, E. M. M. (2016). Corrosion behavior of friction stir welded of similar and dissimilar Al2024-T3 and Al7075-T73 alloys. International Journal Series in Engineering Science,2(5), 13–27. https://doi.org/10.1000/ijses.v0i0.114.

    Article  Google Scholar 

  24. Liang, H., Liu, J., Alfantazi, A., & Asselin, E. (2018). Corrosion behaviour of X100 pipeline steel under a salty droplet covered by simulated diluted bitumen. Materials Letters,222, 196–199. https://doi.org/10.1016/j.matlet.2018.03.168.

    Article  Google Scholar 

  25. Sarkar, P. P., Kumar, P., Manna, M. K., & Chakraborti, P. C. (2005). Microstructural influence on the electrochemical corrosion behaviour of dual-phase steels in 3.5% NaCl solution. Materials Letters,59(19–20), 2488–2491. https://doi.org/10.1016/j.matlet.2005.03.030.

    Article  Google Scholar 

  26. Cai, W., & Nix, W. D. (2018). Imperfections in crystalline solids. Imperfections in crystalline solids. Cambridge: Cambridge University Press. https://doi.org/10.1017/cbo9781316389508.

    Book  Google Scholar 

  27. Jangir, D. K. (2018). Influence of grain size on corrosion resistance and electrochemical behaviour of mild steel. International Journal for Research in Applied Science and Engineering Technology,6(4), 2875–2881. https://doi.org/10.22214/ijraset.2018.4479.

    Article  Google Scholar 

  28. Badawy, W. A., Al-Kharafi, F. M., & El-Azab, A. S. (1999). Electrochemical behaviour and corrosion inhibition of Al, Al-6061 and Al-Cu in neutral aqueous solutions. Corrosion Science,41(4), 709–727. https://doi.org/10.1016/S0010-938X(98)00145-0.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (MSIT) (nos. NRF-2018R1A5A1025224 and NRF-2015R1A5A1037627). This research was also supported by Basic Science Research Program through the NRF funded by the Ministry of Education (2017R1D1A3B03028386). Furthermore, this research was supported by the research fund of Hanbat National University in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon-Hwe Cho.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaman, S.Y., Cho, HH., Das, H. et al. Galvanic Corrosion Assessment of Friction Stir Butt Welded Joint of Aluminum and Steel Alloys. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 905–911 (2020). https://doi.org/10.1007/s40684-019-00183-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00183-5

Keywords

Navigation