Effects of Elemental Alloying on Surface Integrity in Joining of Composite Powders with Heterogeneous Titanium Substrates Using Selective Laser Melting

Abstract

This work outlines advances in material savings on lightweight structure when using additive manufacturing technology in conjunction with laser melting for joining and strengthening of layered Ti-6Al-4V composite powders on commercially pure Ti substrates. The migration of the extrinsic elemental alloys in the titanium composite powders strengthens the matrix structure, particularly in the heat affected zone beneath the joining surface. In the analysis of the main effect and variance (ANOVA), the optimised operating parameters for preferable energy density could increase the elemental migration (aluminium: ~ 3.63 at%, vanadium: ~ 3.31 at%) with appreciable penetration depth, high microhardness (> 440 HV0.3) and a strengthened microstructure. In the confirmation tests, high tensile strength was achieved (1119.2 MPa) with high microhardness (> 440 HV0.3) through the strengthening effects produced by the proper elemental migration under the application of high energy density (> 650 kW/mm3). The composite structure of the lamellar microstructure and phase transformation induced by the Al and V elements spreading into the α-titanium matrix in the substrate are presented and discussed in the variety of parameter combinations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

\(\dot{E}_{generate}\) :

Exerted energy

\(\dot{E}_{in, net}\) :

Energy input

\(\dot{E}_{storage}\) :

The stored energy

\(P_{laser}\) :

Average input laser power

T :

Temperature

U :

Internal energy

\(\dot{W}_{out,net}\) :

Output work

c :

Specific heat capacity

\(dV\) :

Product of \(dw\), \(dh\), \(dv\) and \(dt\)

h :

Layer thickness

k :

Thermal conductivity

t :

Exposure

\(v\) :

Scanning speed

w :

Hatch distance

\(\gamma_{repetition}\) :

Repetition

ρ :

Density

References

  1. 1.

    Elsheikhi, S., & Benyounis, K. (2016). Review of recent developments in injection molding process for polymeric materials. In Reference Module in Materials Science and Materials Engineering. ‎Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.04022-4.

    Google Scholar 

  2. 2.

    Pan, F., Yang, M., & Chen, X. (2016). A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys. Journal of Materials Science and Technology,32(12), 1211–1221. https://doi.org/10.1016/j.jmst.2016.07.001.

    Article  Google Scholar 

  3. 3.

    Leo, P., D’Ostuni, S., & Casalino, G. (2018). Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties. Optics and Laser Technology,100, 109–118. https://doi.org/10.1016/j.optlastec.2017.09.039.

    Article  Google Scholar 

  4. 4.

    Yu, M., Zhao, H., Jiang, Z., Guo, F., Zhou, L., & Song, X. (2019). Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds. Journal of Materials Processing Technology,270, 274–284. https://doi.org/10.1016/j.jmatprotec.2019.03.007.

    Article  Google Scholar 

  5. 5.

    Wohlers, T., Caffrey, T., Campbell, R. I., Diegel, O., & Kowen, J. (2018). Wohlers report 2018: 3D printing and additive manufacturing state of the industry; Annual Worldwide Progress Report. Fort Collins: Wohlers Associates.

    Google Scholar 

  6. 6.

    Lee, H., Lim, C. H. J., Low, M. J., Tham, N., Murukeshan, V. M., & Kim, Y.-J. (2017). Lasers in additive manufacturing: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 307–322. https://doi.org/10.1007/s40684-017-0037-7.

    Article  Google Scholar 

  7. 7.

    Ahn, D.-G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,3(4), 381–395. https://doi.org/10.1007/s40684-016-0048-9.

    Article  Google Scholar 

  8. 8.

    Shipley, H., McDonnell, D., Culleton, M., Coull, R., Lupoi, R., O’Donnell, G., et al. (2018). Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. International Journal of Machine Tools and Manufacture,128, 1–20. https://doi.org/10.1016/j.ijmachtools.2018.01.003.

    Article  Google Scholar 

  9. 9.

    Chua, Z. Y., Ahn, I. H., & Moon, S. K. (2017). Process monitoring and inspection systems in metal additive manufacturing: Status and applications. International Journal of Precision Engineering and Manufacturing-Green Technology,4(2), 235–245. https://doi.org/10.1007/s40684-017-0029-7.

    Article  Google Scholar 

  10. 10.

    Mezzetta, J., Choi, J.-P., Milligan, J., Danovitch, J., Chekir, N., Bois-Brochu, A., et al. (2018). Microstructure-properties relationships of Ti-6Al-4V parts fabricated by selective laser melting. International Journal of Precision Engineering and Manufacturing-Green Technology,5(5), 605–612. https://doi.org/10.1007/s40684-018-0062-1.

    Article  Google Scholar 

  11. 11.

    Kruth, J. P., Levy, G., Klocke, F., & Childs, T. H. C. (2007). Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals,56(2), 730–759. https://doi.org/10.1016/j.cirp.2007.10.004.

    Article  Google Scholar 

  12. 12.

    Masoomi, M., Thompson, S. M., & Shamsaei, N. (2017). Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications. International Journal of Machine Tools and Manufacture,118–119, 73–90. https://doi.org/10.1016/j.ijmachtools.2017.04.007.

    Article  Google Scholar 

  13. 13.

    Chua, B.-L., Lee, H.-J., & Ahn, D.-G. (2018). Estimation of effective thermal conductivity of Ti-6Al-4V powders for a powder bed fusion process using finite element analysis. International Journal of Precision Engineering and Manufacturing,19(2), 257–264. https://doi.org/10.1007/s12541-018-0030-2.

    Article  Google Scholar 

  14. 14.

    Osakada, K., & Shiomi, M. (2006). Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools and Manufacture,46(11), 1188–1193. https://doi.org/10.1016/j.ijmachtools.2006.01.024.

    Article  Google Scholar 

  15. 15.

    Das, S. (2003). Physical aspects of process control in selective laser sintering of metals. Advanced Engineering Materials,5(10), 701–711. https://doi.org/10.1002/adem.200310099.

    Article  Google Scholar 

  16. 16.

    Gu, D., & Shen, Y. (2007). Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. Journal of Alloys and Compounds,432(1), 163–166. https://doi.org/10.1016/j.jallcom.2006.06.011.

    Article  Google Scholar 

  17. 17.

    Wei, Q., Li, S., Han, C., Li, W., Cheng, L., Hao, L., et al. (2015). Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: Microstructure, element distribution, crack and mechanical properties. Journal of Materials Processing Technology,222, 444–453. https://doi.org/10.1016/j.jmatprotec.2015.02.010.

    Article  Google Scholar 

  18. 18.

    Sing, S. L., Yeong, W. Y., & Wiria, F. E. (2016). Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. Journal of Alloys and Compounds,660, 461–470. https://doi.org/10.1016/j.jallcom.2015.11.141.

    Article  Google Scholar 

  19. 19.

    Attar, H., Bönisch, M., Calin, M., Zhang, L.-C., Scudino, S., & Eckert, J. (2014). Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties. Acta Materialia,76, 13–22. https://doi.org/10.1016/j.actamat.2014.05.022.

    Article  Google Scholar 

  20. 20.

    Attar, H., Calin, M., Zhang, L. C., Scudino, S., & Eckert, J. (2014). Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering A,593, 170–177. https://doi.org/10.1016/j.msea.2013.11.038.

    Article  Google Scholar 

  21. 21.

    Renishaw plc. (2019). Data sheet: Ti6Al4V ELI-0406 powder for additive manufacturing. http://resources.renishaw.com/en/download/datasheet-ti6al4v-eli-0406-powder-for-additive-manufacturing--94700. Accessed 18 Nov 2019.

  22. 22.

    Leyens, C., & Peters, M. (2003). Structure and properties of titanium and titanium alloys. In Titanium and titanium alloys: Fundamentals and applications (pp. 19–21). Weinheim: Wiley-VCH.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Taiwan Ministry of Science and Technology for providing financial support (MOST 107-2221-E-011-093). We would also like to express our gratitude to the postgraduate students, Mr. Anchun Chiang and Mr. Kuoming Lu, for their technical advice and support in the experimental work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chunliang Kuo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuo, C., Ye, P. & Liu, J. Effects of Elemental Alloying on Surface Integrity in Joining of Composite Powders with Heterogeneous Titanium Substrates Using Selective Laser Melting. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 815–827 (2020). https://doi.org/10.1007/s40684-019-00174-6

Download citation

Keywords

  • Selective laser melting
  • Composite powder
  • Mechanical strength
  • Elemental migration
  • Microhardness
  • Microstructure