Experimental and Numerical Investigation on Power Characteristics of 300 W Class Horizontal Axis Wind Turbine with Wave Winding Type AFPM Generator

Abstract

This paper focuses on the power characteristics of a 300 W class horizontal axis wind turbine (HAWT) equipped with wave winding type axial flux permanent magnet (AFPM) generator. The small HAWT of this study is downwind type and installed with three high speed blades. Structural design for AFPM generator and wind turbine is carried out, and a fixture device for AFPM generator is developed. The developed AFPM generator is direct drive type and its basic performances are evaluated through no-load and load test. A wind tunnel test of the small HAWT equipped with wave winding type AFPM generator is conducted and the electrical power of the developed wind turbine is calculated. Also, based on the detailed design of the new small HAWT, CFD analysis is performed to calculate the mechanical power. Finally, the numerical power and the experimental power of the developed small HAWT are compared. The maximum coefficient of power of the HAWT is 0.34 at 6.7 m/s due to the application of the new wave winding type AFPM generator.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. 1.

    Dai, K., Bergot, A., Liang, C., Xiang, W. N., & Huang, Z. (2015). Environmental issues associated with wind energy—A review. Renewable Energy,75, 911–921.

    Google Scholar 

  2. 2.

    Danao, L. A., Edwards, J., Eboibi, O., & Howell, R. (2014). A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine. Applied Energy,116, 111–124.

    Google Scholar 

  3. 3.

    Thé, J., & Yu, H. (2017). A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods. Energy,138, 257–289.

    Google Scholar 

  4. 4.

    Luo, Y., Chen, Y., Yang, H., & Wang, Y. (2017). Study on an internally-cooled liquid desiccant dehumidifier with CFD model. Applied Energy,194, 399–409.

    Google Scholar 

  5. 5.

    Li, C., Xiao, Y., Xu, Y., Peng, Y., Hu, G., & Zhu, S. (2018). Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations. Applied Energy,212, 1107–1125.

    Google Scholar 

  6. 6.

    Chong, W., Muzammil, W. K., Wong, K., Wang, C., Gwani, M., Chu, Y., et al. (2017). Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design. Applied Energy,207(1), 78–95.

    Google Scholar 

  7. 7.

    Govind, B. (2017). Increasing the operational capability of a horizontal axis wind turbine by its integration with a vertical axis wind turbine. Applied Energy,199(1), 479–494.

    Google Scholar 

  8. 8.

    Wang, Z., & Zhuang, M. (2017). Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Applied Energy,208(15), 1184–1197.

    Google Scholar 

  9. 9.

    Kumbernuss, J., Jian, C., Wang, J., Yang, H. X., & Fu, W. N. (2012). A novel magnetic levitated bearing system for vertical axis wind turbines (VAWT). Applied Energy,90(1), 148–153.

    Google Scholar 

  10. 10.

    Chen, J., Liu, P., Xu, H., Chen, L., Yang, M., & Yang, L. (2017). A detailed investigation of a novel vertical axis Darrieus wind rotor with two sets of blades. Journal of Renewable and Sustainable Energy,9(1), 0133071.

    Google Scholar 

  11. 11.

    Rezaeiha, A., Kalkman, I., & Blocken, B. (2017). Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy,197, 132–150.

    Google Scholar 

  12. 12.

    Wang, J., Zhou, S., Zhang, Z., & Yurchenko, D. (2019). High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management,181, 645–652.

    Google Scholar 

  13. 13.

    Zhou, S., & Wang, J. (2018). Dual serial vortex-induced energy harvesting system for enhanced energy harvesting. AIP Advances,8(7), 075221.

    Google Scholar 

  14. 14.

    Eriksson, S., Bernhoff, H., & Leijon, M. (2008). Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews,12, 1419–1434.

    Google Scholar 

  15. 15.

    Adomavičius, V., Watkowski, T., Žilinskas, E., Adomavičius, A. (2009). Comparison of small scale wind turbines’ properties. In Proceedings of international conference “electrical and control technologies -2009”. KTU, Kaunas (pp. 374–379).

  16. 16.

    Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., & Krishna, V. H. (2016). A review on small scale wind turbines. Renewable and Sustainable Energy Reviews,56, 1351–1371.

    Google Scholar 

  17. 17.

    Li, Q., Maeda, T., Kamada, Y., & Hiromori, Y. (2018). Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement. Applied Energy,225, 1190–1204.

    Google Scholar 

  18. 18.

    Sainz, J. A. (2015). New wind turbine manufacturing techniques. Procedia Engineering,132, 880–886.

    Google Scholar 

  19. 19.

    Islam, M. R., Guo, Y., & Zhu, J. (2014). A review of offshore wind turbine nacelle: Technical challenges, and research and developmental trends. Renew Sustain Energy Reviews,33, 161–176.

    Google Scholar 

  20. 20.

    Sola, P. J., McDonald, A. S., & Oterkus, E. (2019). Lightweight design of direct-drive wind turbine electrical generators: A comparison between steel and composite material structures. Ocean Engineering,181, 330–341.

    Google Scholar 

  21. 21.

    Mishnaevsky, L., Branner, K., Petersen, H. N., Beauson, J., McGugan, M., & Sørensen, B. F. (2017). Materials for wind turbine blades: An overview. Materials,10, 1285.

    Google Scholar 

  22. 22.

    Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade—A Review. Materials Today: Proceedings,5, 2635–2640.

    Google Scholar 

  23. 23.

    Chung, D. W., & You, Y. M. (2015). Cogging torque reduction in permanent-magnet brushless generators for small wind turbines. Journal of Magnetics,20(2), 176–185.

    Google Scholar 

  24. 24.

    Lee, K. K., Ro, Y. C., Kim, Y. G., Lee, K. H., & Han, S. H. (2014). Shape optimization for light weight design of direct-drive generator in large-scale wind turbine. International Journal of Precision Engineering And Manufacturing,15(10), 2101–2108.

    Google Scholar 

  25. 25.

    Sitapati, K., & Krishnan, R. (2001). Performance comparisons of radial and axial field, permanent-magnet, brushless machines. IEEE Transactions on Industry Applications,37(5), 1219–1226.

    Google Scholar 

  26. 26.

    Garate, J., Solovitz, S. A., & Kim, D. (2018). Fabrication and performance of segmented thermoplastic composite wind turbine blades. International Journal of Precision Engineering and Manufacturing-Green Technology,5(2), 271–277.

    Google Scholar 

  27. 27.

    Laxminarayan, S. S., Singh, M., Saifee, A. H., & Mittal, A. (2017). Design, modeling and simulation of variable speed Axial Flux Permanent Magnet Wind Generator. Sustainable Energy Technologies and Assessments,19, 114–124.

    Google Scholar 

  28. 28.

    Xia, B., Shen, J. X., Luk, P. C. K., & Fei, W. (2014). Comparative study of air-cored axial flux permanent magnet machines with different stator winding configurations. IEEE Transaction on Industrial Electronics,62, 846–856.

    Google Scholar 

  29. 29.

    Nasrin, L. (2011). Improved version of energy efficient motor for shell eco marathon-half weight with higher efficiency. Master of Science in Electric Power Engineering, Norwegian University of Science and Technology.

  30. 30.

    Bang, D., Polinder, H., Shrestha, G., Ferreira, J.A. (2008). Review of generator systems for direct-drive wind turbines. In European wind energy conference & exhibition, Belgium (p. 31).

  31. 31.

    Gieras, J. F., Wang, R. J., & Kamper, M. J. (2004). Axial flux permanent magnet brushless machines. Dordrecht: Kluwer Academic.

    Google Scholar 

  32. 32.

    Lok, C. L., Vengadaesvaran, B., & Ramesh, S. (2017). Implementation of hybrid pattern search–genetic algorithm into optimizing axial-flux permanent magnet coreless generator (AFPMG). Electrical Engineering,99, 751–761.

    Google Scholar 

  33. 33.

    Stubkier, S., & Pedersen, H. C. (2013). Investigation of self yaw and its potential using a hydraulic soft yaw system for 5 MW wind turbine. Wind Engineering,37, 165–182.

    Google Scholar 

  34. 34.

    Kim, M. G., & Dalho, P. H. (2014). Yaw Systems for wind turbines—Overview of concepts, current challenges and design methods. Journal of Physics: Conference Series,524, 012086.

    Google Scholar 

  35. 35.

    Wu, Z., & Wang, H. (2016). Research on active yaw mechanism of small wind turbines. Energy Procedia,16, 53–57.

    Google Scholar 

  36. 36.

    Yoo, C. H., Park, J. H., & Park, S. S. (2018). Design and evaluation of performance tester for yaw brakes in wind turbines. International Journal of Precision Engineering And Manufacturing-Green Tech,5(1), 81–87.

    Google Scholar 

  37. 37.

    Kim, Y., Park, J., Lee, N. K., & Yoon, J. (2017). Profile design of loop-type blade for small wind turbine. International Journalof Precision Engineering and Manufacturing-Green Technology,4(4), 387–392.

    Google Scholar 

  38. 38.

    Menter, F. R., Kuntz, M., & Ten Langtry, R. (2003). Years of industrial experience with the SST turbulence model. Heat Mass Transfer,4, 625–632.

    Google Scholar 

  39. 39.

    ANSYS. (2016). ANSYS CFX-Solver Theory Guide, release 17.1, ANSYS Inc.

  40. 40.

    Balduzzi, F., Bianchini, A., Maleci, R., Ferrara, G., & Ferrari, L. (2016). Critical issues in the CFD simulation of Darrieus wind turbines. Renewable Energy,85, 419–435.

    Google Scholar 

  41. 41.

    Shahizare, B., Nik-Ghazali, N., Chong, W. T., Tabatabaeikia, S., Izadyar, N., & Esmaeilzadeh, A. (2016). Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation. Energy Conversion and Management,117, 206–217.

    Google Scholar 

  42. 42.

    International Standard IEC 61400-12-1. (2005). Wind turbines—Part 12-1: Power performance measurements of electricity producing wind turbines.

  43. 43.

    Tong, Wei. (2010). Wind power generation and wind turbine design (pp. 26–27). Southampton: WIT.

    Google Scholar 

  44. 44.

    Sedaghatizadeh, N., Arjomandi, M., Kelso, R., Cazzolato, B., & Ghayesh, M. H. (2019). The effect of the boundary layer on the wake of a horizontal axis wind turbine. Energy,182, 1202–1221.

    Google Scholar 

  45. 45.

    Rezaeiha, A., Montazeri, H., & Blocken, B. (2018). Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conversion and Management,156, 301–316.

    Google Scholar 

  46. 46.

    Mohamed, M. H., Ali, A. M., & Hafiz, A. A. (2015). CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Engineering Science and Technology, an International Journal,18, 1–13.

    Google Scholar 

  47. 47.

    Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy,180, 838–857.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kwonhee Suh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Suh, K. Experimental and Numerical Investigation on Power Characteristics of 300 W Class Horizontal Axis Wind Turbine with Wave Winding Type AFPM Generator. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 837–848 (2020). https://doi.org/10.1007/s40684-019-00160-y

Download citation

Keywords

  • Wave winding
  • Axial flux permanent magnet generator
  • Horizontal axis wind turbine
  • Computational fluid dynamics
  • Coefficient of power