Skip to main content
Log in

A Review of Human-Powered Energy Harvesting for Smart Electronics: Recent Progress and Challenges

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Recently, energy harvesting from human motion has attracted substantial research into its ability to replace conventional batteries for smart electronics. Human motion exhibits excellent potential to provide sustainable and clean energy for powering low-powered electronics, such as portable instruments and wearable devices. This review article reports on the piezoelectric, electromagnetic, and triboelectric energy harvesting technologies that can effectively scavenge biomechanical energy from human motion such as, walking, stretching, and human limb movement, as well as from small displacements (e.g., heartbeat, respiration, and muscle movement) inside the human body. Furthermore, various recent designs and configurations of human motion energy harvesters are presented according to their working mechanisms, device compositions, and performances. In order to provide insight into future research prospects, the paper also discusses the limitations, issues, and challenges of piezoelectric, electromagnetic, and triboelectric energy harvesting technologies for the development of smart electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

D:

Electric displacement

d:

Piezoelectric coefficient

σ:

Stress

∈:

Permittivity

s:

Elastic Compliance

E:

Electric field Intensity

ε:

Strain

V:

Voltage

N:

Number of turns

\(\theta\) :

Total magnetic flux

t :

Time

B :

Magnetic field

Ai :

Area of \(i{\text{th}}\) coil

V tr :

Initial voltage between the two electrodes

\(\varepsilon_{0}\) :

Vacuum permittivity

d tr :

Interlayer distance

S tr :

Surface area

I tr :

External electrodes

References

  1. Fan, F. R., Tang, W., & Wang, Z. L. (2016). Flexible nanogenerators for energy harvesting and self-powered electronics. Advanced Materials, 28(22), 4283–4305. https://doi.org/10.1002/adma.201504299.

    Google Scholar 

  2. Song, P., Yang, G., Lang, T., & Yong, K.-T. (2018). Nanogenerators for wearable bioelectronics and biodevices. Journal of Physics D: Applied Physics, 52(2), 023002.

    Google Scholar 

  3. Wang, Hao, & Jasim, Abbas. (2018). Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Applied Energy, 212, 1083–1094. https://doi.org/10.1016/j.apenergy.2017.12.125.

    Google Scholar 

  4. Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering. https://doi.org/10.1080/23311916.2016.1167990.

    Google Scholar 

  5. Xie, L., & Cai, M. (2014). Human motion: Sustainable power for wearable electronics. IEEE Pervasive Computing, 13(4), 42–49. https://doi.org/10.1109/MPRV.2014.67.

    Google Scholar 

  6. Roundy, S., & Trolier-McKinstry, S. (2018). Materials and approaches for on-body energy harvesting. MRS Bulletin, 43(3), 206–213.

    Google Scholar 

  7. Fan, K., Yu, B., Zhu, Y., Liu, Z., & Wang, L. (2017). Scavenging energy from the motion of human lower limbs via a piezoelectric energy harvester. International Journal of Modern Physics B, 31(07), 1741011. https://doi.org/10.1142/S0217979217410119.

    Google Scholar 

  8. Kim, M.-O., Pyo, S., Oh, Y., Kang, Y., Cho, K.-H., Choi, J., et al. (2018). Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor. Smart Materials and Structures, 27(3), 035001. https://doi.org/10.1088/1361-665X/aaa722.

    Google Scholar 

  9. Leonov, V. (2011). Energy harvesting for self-powered wearable devices. In Wearable monitoring systems (pp. 27–49). Springer.

  10. Kakihara, R., Kariya, K., Matsushita, Y., Yoshimura, T., & Fujimura, N. (2018). Investigation of piezoelectric energy harvesting from human walking. In Journal of Physics: Conference Series (Vol. 1052, p. 012113). IOP Publishing.

  11. Saha, C. R., O’Donnell, T., Wang, N., & McCloskey, P. (2008). Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators A: Physical, 147(1), 248–253. https://doi.org/10.1016/j.sna.2008.03.008.

    Google Scholar 

  12. Lin, Z., Chen, J., Li, X., Zhou, Z., Meng, K., Wei, W., et al. (2017). Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano, 11(9), 8830–8837.

    Google Scholar 

  13. Kang, M.-G., Jung, W.-S., Kang, C.-Y., & Yoon, S.-J. (2016). Recent progress on PZT based piezoelectric energy harvesting technologies. Actuators, 5(1), 5. https://doi.org/10.3390/act5010005.

    Google Scholar 

  14. Narita, F., & Fox, M. (2018). A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Advanced Engineering Materials, 20(5), 1700743. https://doi.org/10.1002/adem.201700743.

    Google Scholar 

  15. Wang, Z. L. (2018). Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics—A recall on the original thoughts for coining these fields. Nano Energy, 54, 477–483.

    Google Scholar 

  16. Zhang, Y., Cao, J., Zhu, H., & Lei, Y. (2019). Design, modeling and experimental verification of circular Halbach electromagnetic energy harvesting from bearing motion. Energy Conversion and Management, 180, 811–821.

    Google Scholar 

  17. Dinulovic, D., Brooks, M., Haug, M., & Petrovic, T. (2015). Rotational electromagnetic energy harvesting system. Physics Procedia, 75, 1244–1251. https://doi.org/10.1016/j.phpro.2015.12.137.

    Google Scholar 

  18. Niroomand, M., & Foroughi, H. R. (2016). A rotary electromagnetic microgenerator for energy harvesting from human motions. Journal of Applied Research and Technology, 14(4), 259–267. https://doi.org/10.1016/j.jart.2016.06.002.

    Google Scholar 

  19. Halim, M. A., Rantz, R., Zhang, Q., Gu, L., Yang, K., & Roundy, S. (2017). Electromagnetic energy harvesting from swing-arm motion using rotational eccentric mass structure. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (pp. 1863–1866). Presented at the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan: IEEE. https://doi.org/10.1109/transducers.2017.7994434.

  20. Wu, Y., Qiu, J., Zhou, S., Ji, H., Chen, Y., & Li, S. (2018). A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Applied Energy, 231, 600–614. https://doi.org/10.1016/j.apenergy.2018.09.082.

    Google Scholar 

  21. Quan, T., Wang, X., Wang, Z. L., & Yang, Y. (2015). Hybridized electromagnetic-triboelectric nanogenerator for a self-powered electronic watch. ACS Nano, 9(12), 12301–12310. https://doi.org/10.1021/acsnano.5b05598.

    Google Scholar 

  22. Wang, Z. L., Chen, J., & Lin, L. (2015). Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy and Environmental Science, 8(8), 2250–2282.

    Google Scholar 

  23. Wang, S., Lin, L., & Wang, Z. L. (2012). Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Letters, 12(12), 6339–6346. https://doi.org/10.1021/nl303573d.

    Google Scholar 

  24. Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., & Wang, Z. L. (2013). Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 13(5), 2226–2233. https://doi.org/10.1021/nl400738p.

    Google Scholar 

  25. Wang, X., Song, W.-Z., You, M.-H., Zhang, J., Yu, M., Fan, Z., et al. (2018). Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano, 12(8), 8588–8596. https://doi.org/10.1021/acsnano.8b04244.

    Google Scholar 

  26. Wang, S., Xie, Y., Niu, S., Lin, L., & Wang, Z. L. (2014). Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Advanced Materials, 26(18), 2818–2824.

    Google Scholar 

  27. Ha, M., Park, J., Lee, Y., & Ko, H. (2015). Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano, 9(4), 3421–3427.

    Google Scholar 

  28. Khalifa, S., Lan, G., Hassan, M., Seneviratne, A., & Das, S. K. (2018). HARKE: Human activity recognition from kinetic energy harvesting data in wearable devices. IEEE Transactions on Mobile Computing, 17(6), 1353–1368. https://doi.org/10.1109/TMC.2017.2761744.

    Google Scholar 

  29. Dagdeviren, C., Li, Z., & Wang, Z. L. (2017). Energy harvesting from the animal/human body for self-powered electronics. Annual Review of Biomedical Engineering, 19(1), 85–108. https://doi.org/10.1146/annurev-bioeng-071516-044517.

    Google Scholar 

  30. Priya, S., Song, H.-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.-G., et al. (2017). A review on piezoelectric energy harvesting: Materials, methods, and circuits. Energy Harvesting and Systems. https://doi.org/10.1515/ehs-2016-0028.

    Google Scholar 

  31. Cui, J., Yoon, H., & Youn, B. D. (2018). An omnidirectional biomechanical energy harvesting (OBEH) sidewalk block for a Self-generative power grid in a smart city. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 507–517.

    Google Scholar 

  32. Elahi, H., Eugeni, M., & Gaudenzi, P. (2018). A review on mechanisms for piezoelectric-based energy harvesters. Energies, 11(7), 1850. https://doi.org/10.3390/en11071850.

    Google Scholar 

  33. Jaffe, B. (2012). Piezoelectric ceramics. Amsterdam: Elsevier.

    Google Scholar 

  34. Chopra, I. (2002). Review of state of art of smart structures and integrated systems. AIAA Journal, 40(11), 2145–2187.

    Google Scholar 

  35. Kim, H. S., Kim, J.-H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12(6), 1129–1141. https://doi.org/10.1007/s12541-011-0151-3.

    Google Scholar 

  36. Stanton, S. C., McGehee, C. C., & Mann, B. P. (2010). Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D: Nonlinear Phenomena, 239(10), 640–653. https://doi.org/10.1016/j.physd.2010.01.019.

    MATH  Google Scholar 

  37. Ramlan, R., Brennan, M. J., Mace, B. R., & Kovacic, I. (2010). Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dynamics, 59(4), 545–558. https://doi.org/10.1007/s11071-009-9561-5.

    MATH  Google Scholar 

  38. Neiss, S., Goldschmidtboeing, F., Kroener, M., & Woias, P. (2014). Analytical model for nonlinear piezoelectric energy harvesting devices. Smart Materials and Structures, 23(10), 105031. https://doi.org/10.1088/0964-1726/23/10/105031.

    Google Scholar 

  39. Daqaq, M. F., Masana, R., Erturk, A., & Dane Quinn, D. (2014). On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion. Applied Mechanics Reviews, 66(4), 040801. https://doi.org/10.1115/1.4026278.

    Google Scholar 

  40. Krueger, H. H. A., & Berlincourt, D. (1961). Effects of high static stress on the piezoelectric properties of transducer materials. The Journal of the Acoustical Society of America, 33(10), 1339–1344.

    Google Scholar 

  41. Turkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159.

    Google Scholar 

  42. Song, J., Zhao, G., Li, B., & Wang, J. (2017). Design optimization of PVDF-based piezoelectric energy harvesters. Heliyon, 3(9), e00377. https://doi.org/10.1016/j.heliyon.2017.e00377.

    Google Scholar 

  43. Nguyen, C. H., Hanke, U., & Halvorsen, E. (2018). Actuation of piezoelectric layered beams with d31 and d33 coupling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(5), 815–827. https://doi.org/10.1109/TUFFC.2018.2808239.

    Google Scholar 

  44. Jenkins, K., Nguyen, V., Zhu, R., & Yang, R. (2015). Piezotronic effect: An emerging mechanism for sensing applications. Sensors (Basel, Switzerland), 15(9), 22914–22940. https://doi.org/10.3390/s150922914.

    Google Scholar 

  45. Li, L., Xu, J., Liu, J., & Gao, F. (2018). Recent progress on piezoelectric energy harvesting: Structures and materials. Advanced Composites and Hybrid Materials, 1(3), 478–505. https://doi.org/10.1007/s42114-018-0046-1.

    Google Scholar 

  46. Hao, J., Li, W., Zhai, J., & Chen, H. (2019). Progress in high-strain perovskite piezoelectric ceramics. Materials Science and Engineering: R: Reports, 135, 1–57. https://doi.org/10.1016/j.mser.2018.08.001.

    Google Scholar 

  47. Xu, X., Cao, D., Yang, H., & He, M. (2018). Application of piezoelectric transducer in energy harvesting in pavement. International Journal of Pavement Research and Technology, 11(4), 388–395. https://doi.org/10.1016/j.ijprt.2017.09.011.

    Google Scholar 

  48. Lee, A. J., Wang, Y., & Inman, D. J. (2013). Energy harvesting of piezoelectric stack actuator from a shock event. Journal of Vibration and Acoustics, 136(1), 011016. https://doi.org/10.1115/1.4025878.

    Google Scholar 

  49. Feenstra, J., Granstrom, J., & Sodano, H. (2008). Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 22(3), 721–734. https://doi.org/10.1016/j.ymssp.2007.09.015.

    Google Scholar 

  50. Guido, F., Qualtieri, A., Algieri, L., Lemma, E. D., De Vittorio, M., & Todaro, M. T. (2016). AlN-based flexible piezoelectric skin for energy harvesting from human motion. Microelectronic Engineering, 159, 174–178. https://doi.org/10.1016/j.mee.2016.03.041.

    Google Scholar 

  51. Zhao, J., & You, Z. (2014). A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors, 14(7), 12497–12510. https://doi.org/10.3390/s140712497.

    Google Scholar 

  52. Cao, W., Yu, W., & Huang, W. (2019). A Piezoelectric Energy Harvester for Wearable Applications. In W. K. Wong (Ed.), Artificial Intelligence on Fashion and Textiles (Vol. 849, pp. 61–67). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-99695-0_8.

  53. Wen, S., & Xu, Q. (2018). Design of a novel piezoelectric energy harvester for scavenging energy from human walking. In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 792–797). Presented at the 2018 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). https://doi.org/10.1109/aim.2018.8452343.

  54. Qian, F., Xu, T.-B., & Zuo, L. (2018). Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Conversion and Management, 171, 1352–1364. https://doi.org/10.1016/j.enconman.2018.06.069.

    Google Scholar 

  55. Wu, Y., Ma, F., Qu, J., & Qi, T. (2018). Enhanced mechanical and piezoelectric properties of BCZT-CuY/rGO-based nanogenerator for tiny energy harvesting. Materials Letters, 231, 20–23. https://doi.org/10.1016/j.matlet.2018.07.102.

    Google Scholar 

  56. Dong, W., Chen, F., Yang, M., Du, Z., Tang, J., & Zhang, D. (2017). Development of a highly efficient bridge-type mechanism based on negative stiffness. Smart Materials and Structures, 26(9), 095053. https://doi.org/10.1088/1361-665X/aa8102.

    Google Scholar 

  57. Lu, Q., Liu, L., Scarpa, F., Leng, J., & Liu, Y. (2018). A novel composite multi-layer piezoelectric energy harvester. Composite Structures, 201, 121–130. https://doi.org/10.1016/j.compstruct.2018.06.024.

    Google Scholar 

  58. Chen, S., Wang, L., Zhou, W., Musgrave, P., Xu, T.-B., & Zuo, L. (2015). Optimal design of force magnification frame of a piezoelectric stack energy harvester. In J. P. Lynch (Ed.) (p. 943516). Presented at the SPIE smart structures and materials + nondestructive evaluation and health monitoring, San Diego. https://doi.org/10.1117/12.2084284.

  59. Granstrom, J., Feenstra, J., Sodano, H. A., & Farinholt, K. (2007). Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures, 16(5), 1810. https://doi.org/10.1088/0964-1726/16/5/036.

    Google Scholar 

  60. Izadgoshasb, I., Lim, Y. Y., Lake, N., Tang, L., Padilla, R. V., & Kashiwao, T. (2018). Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking. Energy Conversion and Management, 161, 66–73. https://doi.org/10.1016/j.enconman.2018.01.076.

    Google Scholar 

  61. Saida, M., Zaibi, G., Samet, M., & Kachouri, A. (2018). Design and Study of Piezoelectric Energy Harvesting Cantilever from Human Body. In 2018 15th International Multi-Conference on Systems, Signals Devices (SSD) (pp. 164–168). Presented at the 2018 15th international multi-conference on systems, signals devices (SSD). https://doi.org/10.1109/ssd.2018.8570616.

  62. Bai, Y., Tofel, P., Hadas, Z., Smilek, J., Losak, P., Skarvada, P., et al. (2018). Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input. Mechanical Systems and Signal Processing, 106, 303–318. https://doi.org/10.1016/j.ymssp.2018.01.006.

    Google Scholar 

  63. Salim, M., Salim, D., Chandran, D., Aljibori, H. S., & Kherbeet, A. S. (2018). Review of nano piezoelectric devices in biomedicine applications. Journal of Intelligent Material Systems and Structures, 29(10), 2105–2121.

    Google Scholar 

  64. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire–nano letters (ACS Publications). https://pubs.acs.org/doi/abs/10.1021/nl061802g. Retrieved 30 Dec 2018.

  65. Zhang, Z., Chen, Y., & Guo, J. (2019). ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Physica E: Low-dimensional Systems and Nanostructures, 105, 212–218. https://doi.org/10.1016/j.physe.2018.09.007.

    Google Scholar 

  66. Siddiqui, S., Lee, H. B., Kim, D.-I., Duy, L. T., Hanif, A., & Lee, N.-E. (2018). An omnidirectionally stretchable piezoelectric nanogenerator based on hybrid nanofibers and carbon electrodes for multimodal straining and human kinematics energy harvesting. Advanced Energy Materials, 8(2), 1701520. https://doi.org/10.1002/aenm.201701520.

    Google Scholar 

  67. Kim, K.-B., Cho, J. Y., Jeon, D. H., Woo, S. B., Ryu, C. H., Ahn, J. H., et al. (2018). A biocompatible and flexible piezoelectric generator with high-quality boron nitride nanotubes from human running. Nano Energy. https://doi.org/10.1016/j.nanoen.2018.09.071.

    Google Scholar 

  68. Si, S. K., Karan, S. K., Paria, S., Maitra, A., Das, A. K., Bera, R., et al. (2018). A strategy to develop an efficient piezoelectric nanogenerator through ZTO assisted γ-phase nucleation of PVDF in ZTO/PVDF nanocomposite for harvesting bio-mechanical energy and energy storage application. Materials Chemistry and Physics, 213, 525–537. https://doi.org/10.1016/j.matchemphys.2018.04.013.

    Google Scholar 

  69. Dudem, B., Kim, D. H., Bharat, L. K., & Yu, J. S. (2018). Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Applied Energy, 230, 865–874. https://doi.org/10.1016/j.apenergy.2018.09.009.

    Google Scholar 

  70. Shenck, N. S., & Paradiso, J. A. (2001). Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 21(3), 30–42. https://doi.org/10.1109/40.928763.

    Google Scholar 

  71. Rocha, J. G., Goncalves, L. M., Rocha, P. F., Silva, M. P., & Lanceros-Mendez, S. (2010). Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Transactions on Industrial Electronics, 57(3), 813–819. https://doi.org/10.1109/TIE.2009.2028360.

    Google Scholar 

  72. Mateu, L., & Moll, F. (2005). Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. Journal of Intelligent Material Systems and Structures, 16(10), 835–845. https://doi.org/10.1177/1045389X05055280.

    Google Scholar 

  73. Xia, H., & Shull, P. B. (2018). Preliminary testing of an angled sliding shoe for potential human energy harvesting applications. In 2018 2nd International Conference on Robotics and Automation Sciences (ICRAS) (pp. 1–4). Presented at the 2018 2nd international conference on robotics and automation sciences (ICRAS), Wuhan, China: IEEE. https://doi.org/10.1109/icras.2018.8442419.

  74. Cha, Y., & Seo, J. (2018). Energy harvesting from a piezoelectric slipper during walking. Journal of Intelligent Material Systems and Structures, 29(7), 1456–1463. https://doi.org/10.1177/1045389X17740962.

    Google Scholar 

  75. Ma, D., Lan, G., Xu, W., Hassan, M., & Hu, W. (2018). SEHS: Simultaneous energy harvesting and sensing using piezoelectric energy harvester. (:unav). https://doi.org/10.1109/iotdi.2018.00028.

  76. Cao, J., Wang, W., Zhou, S., Inman, D. J., & Lin, J. (2015). Nonlinear time-varying potential bistable energy harvesting from human motion. Applied Physics Letters, 107(14), 143904. https://doi.org/10.1063/1.4932947.

    Google Scholar 

  77. Wang, W., Cao, J., Bowen, C. R., Zhou, S., & Lin, J. (2017). Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions. Energy, 118, 221–230. https://doi.org/10.1016/j.energy.2016.12.035.

    Google Scholar 

  78. Li, Z., Yang, Z., Naguib, H., & Zu, J. (2018). Design and studies on a low-frequency truss-based compressive-mode piezoelectric energy harvester. IEEE/ASME Transactions on Mechatronics, 23(6), 2849–2858. https://doi.org/10.1109/TMECH.2018.2871781.

    Google Scholar 

  79. Almusallam, A., Luo, Z., Komolafe, A., Yang, K., Robinson, A., Torah, R., et al. (2017). Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy, 33, 146–156. https://doi.org/10.1016/j.nanoen.2017.01.037.

    Google Scholar 

  80. Talbourdet, A., Rault, F., Lemort, G., Cochrane, C., Devaux, E., & Campagne, C. (2018). 3D interlock design 100% PVDF piezoelectric to improve energy harvesting. Smart Materials and Structures, 27(7), 075010. https://doi.org/10.1088/1361-665X/aab865.

    Google Scholar 

  81. Ravi, S. K., Wu, T., Udayagiri, V. S., Vu, X. M., Wang, Y., Jones, M. R., et al. (2018). Photosynthetic bioelectronic sensors for touch perception, UV-detection, and nanopower generation: Toward self-powered E-skins. Advanced Materials, 30(39), 1802290. https://doi.org/10.1002/adma.201802290.

    Google Scholar 

  82. Guo, R., Wang, X., Yu, W., Tang, J., & Liu, J. (2018). A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring. Science China Technological Sciences, 61(7), 1031–1037. https://doi.org/10.1007/s11431-018-9253-9.

    Google Scholar 

  83. Kim, S.-W., Lee, Y., Park, J., Kim, S., Chae, H., Ko, H., et al. (2017). A triple-mode flexible e-skin sensor interface for multi-purpose wearable applications. Sensors, 18(2), 78. https://doi.org/10.3390/s18010078.

    Google Scholar 

  84. Dutta, B., Kar, E., Bose, N., & Mukherjee, S. (2018). NiO@SiO2/PVDF: A flexible polymer nanocomposite for a high performance human body motion-based energy harvester and tactile e-skin mechanosensor. ACS Sustainable Chemistry and Engineering, 6(8), 10505–10516. https://doi.org/10.1021/acssuschemeng.8b01851.

    Google Scholar 

  85. He, Z., Gao, B., Li, T., Liao, J., Liu, B., Liu, X., et al. (2018). Piezoelectric-driven self-powered patterned electrochromic supercapacitor for human motion energy harvesting. ACS Sustainable Chemistry and Engineering. https://doi.org/10.1021/acssuschemeng.8b05606.

    Google Scholar 

  86. Zhao, T., Fu, Y., He, H., Dong, C., Zhang, L., Zeng, H., et al. (2018). Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric–enzymatic reaction coupling process. Nanotechnology, 29(7), 075501. https://doi.org/10.1088/1361-6528/aaa2b9.

    Google Scholar 

  87. Zhang, L., Fu, Y., Xing, L., Liu, B., Zhang, Y., & Xue, X. (2017). A self-powered flexible vision electronic-skin for image recognition based on a pixel-addressable matrix of piezophototronic ZnO nanowire arrays. Journal of Materials Chemistry C, 5(24), 6005–6013. https://doi.org/10.1039/C7TC01842H.

    Google Scholar 

  88. He, H., Fu, Y., Zang, W., Wang, Q., Xing, L., Zhang, Y., et al. (2017). A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy, 31, 37–48. https://doi.org/10.1016/j.nanoen.2016.11.020.

    Google Scholar 

  89. Shi, B., Li, Z., & Fan, Y. (2018). Implantable energy-harvesting devices. Advanced Materials, 30(44), 1801511. https://doi.org/10.1002/adma.201801511.

    Google Scholar 

  90. Dagdeviren, C., Yang, B. D., Su, Y., Tran, P. L., Joe, P., Anderson, E., et al. (2014). Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences, 111(5), 1927–1932. https://doi.org/10.1073/pnas.1317233111.

    Google Scholar 

  91. Wu, M., Wang, Y., Gao, S., Wang, R., Ma, C., Tang, Z., et al. (2019). Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy, 56, 693–699. https://doi.org/10.1016/j.nanoen.2018.12.003.

    Google Scholar 

  92. Pillatsch, P., Yeatman, E. M., & Holmes, A. S. (2012). A scalable piezoelectric impulse-excited energy harvester for human body excitation. Smart Materials and Structures, 21(11), 115018. https://doi.org/10.1088/0964-1726/21/11/115018.

    Google Scholar 

  93. Pillatsch, P., Yeatman, E. M., & Holmes, A. S. (2014). A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sensors and Actuators, A: Physical, 206, 178–185. https://doi.org/10.1016/j.sna.2013.10.003.

    Google Scholar 

  94. Kuang, Y., Yang, Z., & Zhu, M. (2016). Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking. Smart Materials and Structures, 25(8), 085029.

    Google Scholar 

  95. Fu, H., & Yeatman, E. M. (2017). A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion. Energy, 125, 152–161.

    Google Scholar 

  96. Luo, Z., Zhu, D., & Beeby, S. P. (2015). Multilayer ferroelectret-based energy harvesting insole. Journal of Physics: Conference Series, 660, 012118. https://doi.org/10.1088/1742-6596/660/1/012118.

    Google Scholar 

  97. Zhao, Y., Fan, H., Ren, X., Long, C., Liu, G., & Liu, Z. (2016). Lead-free Bi La Ti FeO (x = 0, 1) nanofibers toward wool keratin-based biocompatible piezoelectric nanogenerators. Journal of Materials Chemistry C, 4(30), 7324–7331. https://doi.org/10.1039/c6tc01828a.

    Google Scholar 

  98. Kim, K. N., Chun, J., Chae, S. A., Ahn, C. W., Kim, I. W., Kim, S.-W., et al. (2015). Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy, 14, 87–94. https://doi.org/10.1016/j.nanoen.2015.01.004.

    Google Scholar 

  99. Kim, J., Lee, H., & Kim, H. S. (2010). Beam vibration control using cellulose-based electro-active paper sensor. International Journal of Precision Engineering and Manufacturing, 11(6), 823–827.

    Google Scholar 

  100. Abas, Z., Kim, H. S., Zhai, L., & Kim, J. (2015). Experimental study of vibrational energy harvesting using Electro-Active paper. International Journal of Precision Engineering and Manufacturing, 16(6), 1187–1193.

    Google Scholar 

  101. Yun, G., Kim, H. S., & Kim, J. (2008). Blocked force measurement of an electro-active paper actuator using a cantilevered force transducer. Smart Materials and Structures, 17(2), 025021.

    Google Scholar 

  102. Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213.

    Google Scholar 

  103. Costilla-Reyes, A., Abuellil, A., Estrada-Lopez, J. J., Carreon-Bautista, S., & Sanchez-Sinencio, E. (2018). Reconfigurable system for electromagnetic energy harvesting with inherent activity sensing capabilities for wearable technology. IEEE Transactions on Circuits and Systems II: Express Briefs. https://doi.org/10.1109/tcsii.2018.2884613.

    Google Scholar 

  104. Park, H., & Kim, J. (2016). Electromagnetic induction energy harvester for high-speed railroad applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 41–48.

    Google Scholar 

  105. Invernizzi, F., Dulio, S., Patrini, M., Guizzetti, G., & Mustarelli, P. (2016). Energy harvesting from human motion: Materials and techniques. Chemical Society Reviews, 45(20), 5455–5473. https://doi.org/10.1039/C5CS00812C.

    Google Scholar 

  106. Mann, B. P., Barton, D. A., & Owens, B. A. (2012). Uncertainty in performance for linear and nonlinear energy harvesting strategies. Journal of Intelligent Material Systems and Structures, 23(13), 1451–1460. https://doi.org/10.1177/1045389X12439639.

    Google Scholar 

  107. Kucab, K., Górski, G., & Mizia, J. (2015). Energy harvesting in the nonlinear electromagnetic system. The European Physical Journal Special Topics, 224(14–15), 2909–2918. https://doi.org/10.1140/epjst/e2015-02597-1.

    Google Scholar 

  108. Owens, B. A. M., & Mann, B. P. (2012). Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. Journal of Sound and Vibration, 331(4), 922–937. https://doi.org/10.1016/j.jsv.2011.10.026.

    Google Scholar 

  109. Fu, H., & Yeatman, E. M. (2018). Comparison and scaling effects of rotational micro-generators using electromagnetic and piezoelectric transduction. Energy Technology, 6(11), 2220–2231. https://doi.org/10.1002/ente.201800151.

    Google Scholar 

  110. Liu, H., Hou, C., Lin, J., Li, Y., Shi, Q., Chen, T., et al. (2018). A non-resonant rotational electromagnetic energy harvester for low-frequency and irregular human motion. Applied Physics Letters, 113(20), 203901. https://doi.org/10.1063/1.5053945.

    Google Scholar 

  111. Lin, J., Liu, H., Chen, T., Yang, Z., & Sun, L. (2017). A rotational wearable energy harvester for human motion. In 2017 IEEE 17th International conference on nanotechnology (IEEE-NANO) (pp. 22–25). Presented at the 2017 IEEE 17th international conference on nanotechnology (IEEE-NANO), Pittsburgh, PA, USA: IEEE. https://doi.org/10.1109/nano.2017.8117409.

  112. Zhu, D., Duarte-Rabelo, I., Ayala-Garcia, I. N., & Somov, A. (2018). An electromagnetic in-shoe energy harvester using wave springs. In 2018 IEEE industrial cyber-physical systems (ICPS) (pp. 659–663). Presented at the 2018 IEEE industrial cyber-physical systems (ICPS), St. Petersburg: IEEE. https://doi.org/10.1109/icphys.2018.8390785.

  113. Wang, W., Cao, J., Zhang, N., Lin, J., & Liao, W.-H. (2017). Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments. Energy Conversion and Management, 132, 189–197. https://doi.org/10.1016/j.enconman.2016.11.026.

    Google Scholar 

  114. Ylli, K., Hoffmann, D., Willmann, A., Becker, P., Folkmer, B., & Manoli, Y. (2015). Energy harvesting from human motion: Exploiting swing and shock excitations. Smart Materials and Structures, 24(2), 025029. https://doi.org/10.1088/0964-1726/24/2/025029.

    Google Scholar 

  115. Halim, M. A., Cho, H., & Park, J. Y. (2015). Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Conversion and Management, 106, 393–404. https://doi.org/10.1016/j.enconman.2015.09.065.

    Google Scholar 

  116. Anjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001.

    Google Scholar 

  117. Zhang, Q., Wang, Y., & Kim, E. S. (2015). Electromagnetic energy harvester with flexible coils and magnetic spring for 1–10 Hz resonance. Journal of Microelectromechanical Systems, 24(4), 1193–1206. https://doi.org/10.1109/jmems.2015.2393911.

    Google Scholar 

  118. Halim, M. A., Rantz, R., Zhang, Q., Gu, L., Yang, K., & Roundy, S. (2018). An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Applied Energy, 217, 66–74. https://doi.org/10.1016/j.apenergy.2018.02.093.

    Google Scholar 

  119. Zhang, Q., Gu, L., Yang, K., Halim, M. A., Rantz, R., & Roundy, S. (2016). Kinetic energy harvesting using improved eccentric rotor architecture for wearable sensors. In 2016 IEEE SENSORS (pp. 1–3). Presented at the 2016 IEEE SENSORS, Orlando: IEEE. https://doi.org/10.1109/icsens.2016.7808949.

  120. Miyoshi, T., Adachi, M., Tanaka, Y., & Suzuki, Y. (2018). Low-profile Rotational Electret Energy Harvester for Battery-less Wearable Device. In 2018 IEEE/ASME international conference on advanced intelligent mechatronics (AIM) (pp. 391–394). Presented at the 2018 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), Auckland: IEEE. https://doi.org/10.1109/aim.2018.8452249.

  121. Xue, T., Williams, S., Rantz, R., Halim, M. A., & Roundy, S. (2018). System modeling, characterization, and design considerations for generators in commercial watches with application to energy harvesting for wearables. IEEE/ASME Transactions on Mechatronics, 23(5), 2515–2524. https://doi.org/10.1109/TMECH.2018.2865307.

    Google Scholar 

  122. Zhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human—Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82, 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102.

    Google Scholar 

  123. Liu, L., Tang, W., Deng, C., Chen, B., Han, K., Zhong, W., et al. (2018). Self-powered versatile shoes based on hybrid nanogenerators. Nano Research, 11(8), 3972–3978. https://doi.org/10.1007/s12274-018-1978-z.

    Google Scholar 

  124. Ren, X., Fan, H., Wang, C., Ma, J., Lei, S., Zhao, Y., et al. (2017). Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy. Nano Energy, 35, 233–241. https://doi.org/10.1016/j.nanoen.2017.03.047.

    Google Scholar 

  125. Halim, M. A., Cho, H., Salauddin, Md, & Park, J. Y. (2016). A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion. Sensors and Actuators, A: Physical, 249, 23–31. https://doi.org/10.1016/j.sna.2016.08.008.

    Google Scholar 

  126. Halim, M. A., Rantz, R., Zhang, Q., Gu, L., Yang, K., & Roundy, S. (2018). Modeling and experimental analysis of a wearable energy harvester that exploits human-body motion. In Presented at 2018 IEEE SENSORS. https://doi.org/10.1109/ICSENS.2018.8589632

  127. Magno, M., Kneubuhler, D., Mayer, P., & Benini, L. (2018). Micro Kinetic Energy Harvesting for Autonomous Wearable Devices. In 2018 International symposium on power electronics, electrical drives, automation and motion (SPEEDAM) (pp. 105–110). Presented at the 2018 international symposium on power electronics, electrical drives, automation and motion (SPEEDAM), Amalfi, Italy: IEEE. https://doi.org/10.1109/speedam.2018.8445342.

  128. Wu, S., Luk, P. C. K., Li, C., Zhao, X., Jiao, Z., & Shang, Y. (2017). An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant. Applied Energy, 197, 364–374. https://doi.org/10.1016/j.apenergy.2017.04.006.

    Google Scholar 

  129. Maharjan, P., Cho, H., Rasel, M. S., Salauddin, Md, & Park, J. Y. (2018). A fully enclosed, 3D printed, hybridized nanogenerator with flexible flux concentrator for harvesting diverse human biomechanical energy. Nano Energy, 53, 213–224. https://doi.org/10.1016/j.nanoen.2018.08.034.

    Google Scholar 

  130. Salauddin, M., & Park, J. Y. (2017). Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array. Smart Materials and Structures, 26(3), 035011. https://doi.org/10.1088/1361-665X/aa573f.

    Google Scholar 

  131. Berdy, D. F., Valentino, D. J., & Peroulis, D. (2015). Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester. Sensors and Actuators, A: Physical, 222, 262–271. https://doi.org/10.1016/j.sna.2014.12.006.

    Google Scholar 

  132. Fan, K., Cai, M., Liu, H., & Zhang, Y. (2019). Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy, 169, 356–368. https://doi.org/10.1016/j.energy.2018.12.053.

    Google Scholar 

  133. Fan, K., Zhang, Y., Liu, H., Cai, M., & Tan, Q. (2019). A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renewable Energy, 138, 292–302.

    Google Scholar 

  134. Halim, M. A., & Park, J. Y. (2013). A frequency up-converted electromagnetic energy harvester using human hand-shaking. In Journal of Physics: Conference Series (Vol. 476, p. 012119). IOP Publishing.

  135. Zhang, K., Wang, X., Yang, Y., & Wang, Z. L. (2015). Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano, 9(4), 3521–3529. https://doi.org/10.1021/nn507455f.

    Google Scholar 

  136. Fan, F.-R., Tian, Z.-Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328–334.

    Google Scholar 

  137. Zheng, Q., Shi, B., Li, Z., & Wang, Z. L. (2017). Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Advanced Science, 4(7), 1700029. https://doi.org/10.1002/advs.201700029.

    Google Scholar 

  138. Liu, Z., Li, H., Shi, B., Fan, Y., Wang, Z. L., & Li, Z. (2019). Wearable and implantable triboelectric nanogenerators. Advanced Functional Materials, 29, 1808820.

    Google Scholar 

  139. Zhu, G., Pan, C., Guo, W., Chen, C.-Y., Zhou, Y., Yu, R., et al. (2012). Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Letters, 12(9), 4960–4965. https://doi.org/10.1021/nl302560k.

    Google Scholar 

  140. Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y. S., Jing, Q., Su, Y., et al. (2013). Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano, 7(10), 9213–9222. https://doi.org/10.1021/nn403838y.

    Google Scholar 

  141. Bai, P., Zhu, G., Lin, Z.-H., Jing, Q., Chen, J., Zhang, G., et al. (2013). Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano, 7(4), 3713–3719. https://doi.org/10.1021/nn4007708.

    Google Scholar 

  142. Zhu, G., Bai, P., Chen, J., & Lin Wang, Z. (2013). Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2(5), 688–692. https://doi.org/10.1016/j.nanoen.2013.08.002.

    Google Scholar 

  143. Yang, W., Chen, J., Zhu, G., Yang, J., Bai, P., Su, Y., et al. (2013). Harvesting energy from the natural vibration of human walking. ACS Nano, 7(12), 11317–11324. https://doi.org/10.1021/nn405175z.

    Google Scholar 

  144. Hou, T.-C., Yang, Y., Zhang, H., Chen, J., Chen, L.-J., & Lin Wang, Z. (2013). Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy, 2(5), 856–862. https://doi.org/10.1016/j.nanoen.2013.03.001.

    Google Scholar 

  145. Kim, H.-J., Yim, E.-C., Kim, J.-H., Kim, S.-J., Park, J.-Y., & Oh, I.-K. (2017). Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy, 33, 130–137.

    Google Scholar 

  146. Kim, H.-J., Kim, J.-H., Jun, K.-W., Kim, J.-H., Seung, W.-C., Kwon, O. H., et al. (2016). Silk nanofiber-networked bio-triboelectric generator: Silk Bio-TEG. Advanced Energy Materials, 6(8), 1–6.

    Google Scholar 

  147. Chen, H., Song, Y., Cheng, X., & Zhang, H. (2019). Self-powered electronic skin based on the triboelectric generator. Nano Energy, 56, 252–268. https://doi.org/10.1016/j.nanoen.2018.11.061.

    Google Scholar 

  148. Zhu, G., Chen, J., Zhang, T., Jing, Q., & Wang, Z. L. (2014). Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications. https://doi.org/10.1038/ncomms4426.

    Google Scholar 

  149. Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y., et al. (2013). Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 13(6), 2916–2923. https://doi.org/10.1021/nl4013002.

    Google Scholar 

  150. Song, Y., Wang, H., Cheng, X., Li, G., Chen, X., Chen, H., et al. (2019). High-efficiency self-charging smart bracelet for portable electronics. Nano Energy, 55, 29–36. https://doi.org/10.1016/j.nanoen.2018.10.045.

    Google Scholar 

  151. Pu, X., Song, W., Liu, M., Sun, C., Du, C., Jiang, C., et al. (2016). Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Advanced Energy Materials, 6(20), 1601048. https://doi.org/10.1002/aenm.201601048.

    Google Scholar 

  152. Shao, J., Jiang, T., Tang, W., Xu, L., Kim, T. W., Wu, C., et al. (2018). Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. Nano Energy, 48, 292–300. https://doi.org/10.1016/j.nanoen.2018.03.067.

    Google Scholar 

  153. Zhu, G., Zhou, Y. S., Bai, P., Meng, X. S., Jing, Q., Chen, J., et al. (2014). A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Advanced Materials, 26(23), 3788–3796. https://doi.org/10.1002/adma.201400021.

    Google Scholar 

  154. Lai, Y.-C. (2019). Nanowires for triboelectric nanogenerators. In Nanowire Electronics (pp. 353–365). Springer.

  155. Chen, S. W., Cao, X., Wang, N., Ma, L., Zhu, H. R., Willander, M., et al. (2017). An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Advanced Energy Materials, 7(1), 1601255. https://doi.org/10.1002/aenm.201601255.

    Google Scholar 

  156. Cheng, X., Meng, B., Zhang, X., Han, M., Su, Z., & Zhang, H. (2015). Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy, 12, 19–25.

    Google Scholar 

  157. Zhang, H., Yang, Y., Hou, T.-C., Su, Y., Hu, C., & Wang, Z. L. (2013). Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy, 2(5), 1019–1024. https://doi.org/10.1016/j.nanoen.2013.03.024.

    Google Scholar 

  158. Yi, F., Lin, L., Niu, S., Yang, P. K., Wang, Z., Chen, J., et al. (2015). Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Advanced Functional Materials, 25(24), 3688–3696. https://doi.org/10.1002/adfm.201500428.

    Google Scholar 

  159. Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y., et al. (2014). Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Advanced Functional Materials, 24(22), 3332–3340. https://doi.org/10.1002/adfm.201303799.

    Google Scholar 

  160. Zhu, G., Yang, W. Q., Zhang, T., Jing, Q., Chen, J., Zhou, Y. S., et al. (2014). Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 14(6), 3208–3213. https://doi.org/10.1021/nl5005652.

    Google Scholar 

  161. Hofmann, M., & Schellnhuber, H. J. (2010). Ocean acidification: A millennial challenge. Energy and Environmental Science, 3(12), 1883. https://doi.org/10.1039/c000820f.

    Google Scholar 

  162. Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., et al. (2014). Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Advanced Materials, 26(38), 6599–6607.

    Google Scholar 

  163. Guo, H., Chen, J., Yeh, M.-H., Fan, X., Wen, Z., Li, Z., et al. (2015). An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano, 9(5), 5577–5584.

    Google Scholar 

  164. Zhang, C., Tang, W., Pang, Y., Han, C., & Wang, Z. L. (2015). Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Advanced Materials, 27(4), 719–726.

    Google Scholar 

  165. Wang, S., Niu, S., Yang, J., Lin, L., & Wang, Z. L. (2014). Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano, 8(12), 12004–12013.

    Google Scholar 

  166. Cherenack, K., Zysset, C., Kinkeldei, T., Münzenrieder, N., & Tröster, G. (2010). Woven electronic fibers with sensing and display functions for smart textiles. Advanced Materials, 22(45), 5178–5182.

    Google Scholar 

  167. Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X.-M. (2014). Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310–5336.

    Google Scholar 

  168. Li, Z., & Wang, Z. L. (2011). Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Advanced Materials, 23(1), 84–89.

    Google Scholar 

  169. Tian, Z., He, J., Chen, X., Zhang, Z., Wen, T., Zhai, C., et al. (2017). Performance-boosted triboelectric textile for harvesting human motion energy. Nano Energy, 39, 562–570. https://doi.org/10.1016/j.nanoen.2017.06.018.

    Google Scholar 

  170. Xiong, J., Cui, P., Chen, X., Wang, J., Parida, K., Lin, M.-F., et al. (2018). Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nature Communications. https://doi.org/10.1038/s41467-018-06759-0.

    Google Scholar 

  171. Kwak, S. S., Kim, H., Seung, W., Kim, J., Hinchet, R., & Kim, S.-W. (2017). Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano, 11(11), 10733–10741. https://doi.org/10.1021/acsnano.7b05203.

    Google Scholar 

  172. Seung, W., Gupta, M. K., Lee, K. Y., Shin, K.-S., Lee, J.-H., Kim, T. Y., et al. (2015). Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano, 9(4), 3501–3509. https://doi.org/10.1021/nn507221f.

    Google Scholar 

  173. Zhao, Z., Yan, C., Liu, Z., Fu, X., Peng, L.-M., Hu, Y., et al. (2016). Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Advanced Materials, 28(46), 10267–10274.

    Google Scholar 

  174. Li, Z., Shen, J., Abdalla, I., Yu, J., & Ding, B. (2017). Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 36, 341–348.

    Google Scholar 

  175. Roundy, S., Wright, P. K., & Rabaey, J. M. (2003). Energy scavenging for wireless sensor networks. Norwell, 45–47.

  176. Miao, P., Holmes, A. S., Yeatman, E. M., Green, T. C., & Mitcheson, P. D. (2004). Micro-machined variable capacitors for power generation. In Conference Series-Institute of Physics (Vol. 178, pp. 53–58). Philadelphia; Institute of Physics; 1999.

  177. Miao, P., Mitcheson, P. D., Holmes, A. S., Yeatman, E. M., Green, T. C., & Stark, B. H. (2006). MEMS inertial power generators for biomedical applications. Microsystem Technologies, 12(10–11), 1079–1083.

    Google Scholar 

  178. Shen, J., Li, Z., Yu, J., & Ding, B. (2017). Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 40, 282–288.

    Google Scholar 

  179. Li, S., Wang, J., Peng, W., Lin, L., Zi, Y., Wang, S., et al. (2017). Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Advanced Energy Materials, 7(13), 1602832.

    Google Scholar 

  180. Zhu, Y., Yang, B., Liu, J., Wang, X., Wang, L., Chen, X., et al. (2016). A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices. Scientific Reports, 6, 22233.

    Google Scholar 

  181. Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.

    Google Scholar 

  182. Yang, W., Chen, J., Wen, X., Jing, Q., Yang, J., Su, Y., et al. (2014). Triboelectrification based motion sensor for human-machine interfacing. ACS Applied Materials and Interfaces, 6(10), 7479–7484.

    Google Scholar 

  183. Pu, X., Guo, H., Chen, J., Wang, X., Xi, Y., Hu, C., et al. (2017). Eye motion triggered self-powered mechanosensational communication system using triboelectric nanogenerator. Science Advances, 3(7), e1700694.

    Google Scholar 

  184. Dhakar, L., Pitchappa, P., Tay, F. E. H., & Lee, C. (2016). An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy, 19, 532–540.

    Google Scholar 

  185. Wang, L., & Daoud, W. A. (2018). Highly flexible and transparent polyionic-skin triboelectric nanogenerator for biomechanical motion harvesting. Advanced Energy Materials, 12, 1803183.

    Google Scholar 

  186. Lai, Y.-C., Deng, J., Niu, S., Peng, W., Wu, C., Liu, R., et al. (2016). Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Advanced Materials, 28(45), 10024–10032.

    Google Scholar 

  187. Jiang, Q., Wu, C., Wang, Z., Wang, A. C., He, J.-H., Wang, Z. L., et al. (2018). MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 45, 266–272.

    Google Scholar 

  188. Rapoport, B. I., Kedzierski, J. T., & Sarpeshkar, R. (2012). A glucose fuel cell for implantable brain–machine interfaces. PLoS One, 7(6), e38436.

    Google Scholar 

  189. Occhiuzzi, C., Contri, G., & Marrocco, G. (2012). Design of implanted RFID tags for passive sensing of human body: The STENTag. IEEE Transactions on Antennas and Propagation, 60(7), 3146–3154.

    MathSciNet  MATH  Google Scholar 

  190. Ding, X., Cao, H., Zhang, X., Li, M., & Liu, Y. (2018). Large scale triboelectric nanogenerator and self-powered flexible sensor for human sleep monitoring. Sensors, 18(6), 1713.

    Google Scholar 

  191. Ma, Y., Zheng, Q., Liu, Y., Shi, B., Xue, X., Ji, W., et al. (2016). Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Letters, 16(10), 6042–6051.

    Google Scholar 

  192. Xu, W., Wong, M.-C., & Hao, J. (2019). Strategies and progress on improving robustness and reliability of triboelectric nanogenerators. Nano Energy, 55, 203–215. https://doi.org/10.1016/j.nanoen.2018.10.073.

    Google Scholar 

  193. Zhou, Q., Lee, K., Kim, K. N., Park, J. G., Pan, J., Bae, J., et al. (2019). High humidity- and contamination-resistant triboelectric nanogenerator with superhydrophobic interface. Nano Energy, 57, 903–910. https://doi.org/10.1016/j.nanoen.2018.12.091.

    Google Scholar 

  194. Xu, W., Huang, L.-B., & Hao, J. (2017). Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy, 40, 399–407. https://doi.org/10.1016/j.nanoen.2017.08.045.

    Google Scholar 

  195. Zheng, Q., Jin, Y., Liu, Z., Ouyang, H., Li, H., Shi, B., et al. (2016). Robust multilayered encapsulation for high-performance triboelectric nanogenerator in harsh environment. ACS Applied Materials and Interfaces, 8(40), 26697–26703. https://doi.org/10.1021/acsami.6b06866.

    Google Scholar 

  196. Cho, H., Chung, J., Shin, G., Sim, J.-Y., Kim, D. S., Lee, S., et al. (2019). Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: The role of hierarchical structures. Nano Energy, 56, 56–64. https://doi.org/10.1016/j.nanoen.2018.11.039.

    Google Scholar 

  197. Lim, G.-H., Kwak, S. S., Kwon, N., Kim, T., Kim, H., Kim, S. M., et al. (2017). Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy, 42, 300–306.

    Google Scholar 

  198. He, X., Zi, Y., Guo, H., Zheng, H., Xi, Y., Wu, C., et al. (2017). A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Advanced Functional Materials, 27(4), 1604378.

    Google Scholar 

  199. Zhang, K., Wang, Z. L., & Yang, Y. (2016). Conductive fabric-based stretchable hybridized nanogenerator for scavenging biomechanical energy. ACS Nano, 10(4), 4728–4734.

    Google Scholar 

  200. Wen, Z., Yang, Y., Sun, N., Li, G., Liu, Y., Chen, C., et al. (2018). A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Advanced Functional Materials, 28(37), 1803684.

    Google Scholar 

  201. Chen, X., Miao, L., Guo, H., Chen, H., Song, Y., Su, Z., et al. (2018). Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing. Applied Physics Letters, 112(20), 203902.

    Google Scholar 

  202. Yan, S., Lu, J., Song, W., & Xiao, R. (2018). Flexible triboelectric nanogenerator based on cost-effective thermoplastic polymeric nanofiber membranes for body-motion energy harvesting with high humidity-resistance. Nano Energy, 48, 248–255.

    Google Scholar 

  203. Yu, A., Pu, X., Wen, R., Liu, M., Zhou, T., Zhang, K., et al. (2017). Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano, 11(12), 12764–12771.

    Google Scholar 

  204. Li, W., Torres, D., Wang, T., Wang, C., & Sepúlveda, N. (2016). Flexible and biocompatible polypropylene ferroelectret nanogenerator (FENG): On the path toward wearable devices powered by human motion. Nano Energy, 30, 649–657. https://doi.org/10.1016/j.nanoen.2016.10.007.

    Google Scholar 

  205. Wang, Z. L. (2015). Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discussions, 176, 447–458.

    Google Scholar 

  206. Luo, Z., Zhu, D., & Beeby, S. P. (2015). Multilayer ferroelectret-based energy harvesting insole. In Journal of Physics: Conference Series (Vol. 660, p. 012118). IOP Publishing.

  207. Khan, F., Sassani, F., & Stoeber, B. (2014). Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations. Microsystem Technologies, 20(7), 1323–1335.

    Google Scholar 

  208. Boisseau, S., Despesse, G., & Seddik, B. A. (2012). Electrostatic conversion for vibration energy harvesting (arXiv preprint). arXiv:1210.5191.

  209. Roundy, S., Wright, P. K., & Rabaey, J. M. (2003). Energy scavenging for wireless sensor networks. Norwell, 45–47.

  210. Ma, D., Lan, G., Xu, W., Hassan, M., & Hu, W. (2018). SEHS: Simultaneous Energy Harvesting and Sensing Using Piezoelectric Energy Harvester. In 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI) (pp. 201–212). Presented at the 2018 IEEE/ACM third international conference on internet-of-things design and implementation (IoTDI), Orlando, FL: IEEE. https://doi.org/10.1109/iotdi.2018.00028.

  211. Izadgoshasb, I., Lim, Y. Y., Tang, L., Padilla, R. V., Tang, Z. S., & Sedighi, M. (2019). Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Conversion and Management, 184, 559–570. https://doi.org/10.1016/j.enconman.2019.02.001.

    Google Scholar 

  212. Caliò, R., Rongala, U., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., et al. (2014). Piezoelectric energy harvesting solutions. Sensors, 14(3), 4755–4790. https://doi.org/10.3390/s140304755.

    Google Scholar 

  213. Pillatsch, P., Yeatman, E. M., Holmes, A. S., & Wright, P. K. (2016). Wireless power transfer system for a human motion energy harvester. Sensors and Actuators, A: Physical, 244, 77–85. https://doi.org/10.1016/j.sna.2016.04.022.

    Google Scholar 

  214. Luciano, V., Sardini, E., Serpelloni, M., & Baronio, G. (2014). An energy harvesting converter to power sensorized total human knee prosthesis. Measurement Science and Technology, 25(2), 025702. https://doi.org/10.1088/0957-0233/25/2/025702.

    Google Scholar 

  215. Zhang, Q., Wang, Y., & Kim, E. S. (2014). Power generation from human body motion through magnet and coil arrays with magnetic spring. Journal of Applied Physics, 115(6), 064908. https://doi.org/10.1063/1.4865792.

    Google Scholar 

  216. Brunner, S., Gerst, M., & Pylatiuk, C. (2017). Design of a body energy harvesting system for the upper extremity. Current Directions in Biomedical Engineering. https://doi.org/10.1515/cdbme-2017-0067.

    Google Scholar 

  217. Bendame, M., Abdel-Rahman, E., & Soliman, M. (2015). Electromagnetic impact vibration energy harvesters. In M. Belhaq (Ed.), Structural nonlinear dynamics and diagnosis (Vol. 168, pp. 29–58). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-19851-4_2.

  218. Geisler, M., Boisseau, S., Perez, M., Ait-Ali, I., & Perraud, S. (2016). Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors. Journal of Physics: Conference Series, 773, 012044. https://doi.org/10.1088/1742-6596/773/1/012044.

    Google Scholar 

  219. Ning, C., Tian, L., Zhao, X., Xiang, S., Tang, Y., Liang, E., et al. (2018). Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. Journal of Materials Chemistry A, 6(39), 19143–19150. https://doi.org/10.1039/C8TA07784C.

    Google Scholar 

  220. Zhang, Z., Du, K., Chen, X., Xue, C., & Wang, K. (2018). An air-cushion triboelectric nanogenerator integrated with stretchable electrode for human-motion energy harvesting and monitoring. Nano Energy, 53, 108–115. https://doi.org/10.1016/j.nanoen.2018.08.011.

    Google Scholar 

  221. Tang, W., Jiang, T., Fan, F. R., Yu, A. F., Zhang, C., Cao, X., et al. (2015). Liquid–metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Advanced Functional Materials, 25(24), 3718–3725. https://doi.org/10.1002/adfm.201501331.

    Google Scholar 

  222. Dai, D., & Liu, J. (2014). Hip-mounted electromagnetic generator to harvest energy from human motion. Frontiers in Energy, 8(2), 173–181. https://doi.org/10.1007/s11708-014-0301-2.

    Google Scholar 

  223. Xia, K., Zhu, Z., Zhang, H., Du, C., Fu, J., & Xu, Z. (2019). Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy, 56, 400–410. https://doi.org/10.1016/j.nanoen.2018.11.071.

    Google Scholar 

  224. Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., & Zhu, M. (2015). Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 14, 226–235. https://doi.org/10.1016/j.nanoen.2015.01.038.

    Google Scholar 

  225. El-Sayed, A.-R., Tai, K., Biglarbegian, M., & Mahmud, S. (2016). A survey on recent energy harvesting mechanisms. In 2016 IEEE Canadian conference on electrical and computer engineering (CCECE) (pp. 1–5). IEEE.

  226. Khan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001.

    Google Scholar 

  227. Lu, Y., Cottone, F., Boisseau, S., Marty, F., Galayko, D., & Basset, P. (2015). A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices. Applied Physics Letters, 107(25), 253902.

    Google Scholar 

  228. Zhang, Y., Wang, T., Luo, A., Hu, Y., Li, X., & Wang, F. (2018). Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Applied Energy, 212, 362–371.

    Google Scholar 

  229. Bu, L., Wu, X., Wang, X., & Liu, L. (2013). Liquid encapsulated electrostatic energy harvester for low-frequency vibrations. Journal of Intelligent Material Systems and Structures, 24(1), 61–69.

    Google Scholar 

  230. Leonov, V. (2011). Thermoelectric energy harvester on the heated human machine. Journal of Micromechanics and Microengineering, 21(12), 125013.

    Google Scholar 

  231. Sultana, A., Alam, M. M., Middya, T. R., & Mandal, D. (2018). A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat. Applied Energy, 221, 299–307.

    Google Scholar 

  232. Kim, C. S., Yang, H. M., Lee, J., Lee, G. S., Choi, H., Kim, Y. J., et al. (2018). Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Letters, 3(3), 501–507. https://doi.org/10.1021/acsenergylett.7b01237.

    Google Scholar 

  233. Du, Y., Cai, K., Chen, S., Wang, H., Shen, S. Z., Donelson, R., et al. (2015). Thermoelectric fabrics: Toward power generating clothing. Scientific Reports, 5, 6411.

    Google Scholar 

  234. Leonov, V. (2013). Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sensors Journal, 13(6), 2284–2291.

    Google Scholar 

  235. Bowen, C. R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., & Vaish, R. (2014). Pyroelectric materials and devices for energy harvesting applications. Energy and Environmental Science, 7(12), 3836–3856.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2017R1D1A1B03028368), funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Soo Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, S., Raouf, I., Khan, A. et al. A Review of Human-Powered Energy Harvesting for Smart Electronics: Recent Progress and Challenges. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 821–851 (2019). https://doi.org/10.1007/s40684-019-00144-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00144-y

Keywords

Navigation