Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System

Abstract

The rise in global urbanization comes with sustainable development challenges, especially in lower-middle-income countries. In response to these urbanization and energy challenges, this study focuses on the roles of energy materials (EMs) advances on community-scale hybrid renewable energy systems (HRES). The study proposes the integration of energy material (EM) R&D into HRES (EMR&D-HRES). The study examines the economic benefits and the environmental and health consequences that trail the deployment of fossil fuels. Special attention was given to SSA, a region that—accommodates the highest population without modern energy; emits the least CO2 to the global CO2 emissions and yet endangered by climate change challenges and air pollution diseases. The study includes global responses to energy challenges, such as increase alternative energies share, with special attention to solar photovoltaic (PV) power generation technologies; policy framework; HRES and effects of PV materials advances on HRES. This study is of the view that a further breakthrough in the production of low-cost flexible thin film PV modules will facilitate energy trilemma accomplishment. The exploitation of the attributes of atomic layer deposition in manufacturing of thin film is seen as a potential future production technique, suitable for efficient flexible thin-film PV module production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    UN. (2014). World urbanization prospects: The 2014 revision. New York: UN.

    Google Scholar 

  2. 2.

    IEA. (2014). CO 2emissions from fuel combustion statistics highlights. IEA Statistics, 2014 Edition, International Energy Agency.

  3. 3.

    Kuttan, S. C. (2015). The engineer, the energy trilemma and the smart nation, energy in transition.

  4. 4.

    Zengkun, F., & Chua, G. (2015). From the straits times archives: Resolving Singapore’s Green Energy Trilemma. http://www.straitstimes.com/singapore/environment/from-the-straits-times-archives-resolving-singapores-green-energy-tri-lemma.

  5. 5.

    UN-Habitat. (2011). Cities and Climate change: Global report on human settlements (p. 2011). UK: Earthscan Ltd.

    Google Scholar 

  6. 6.

    Dodman, D. (2009). Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environment and Urbanization,21, 185–201.

    Google Scholar 

  7. 7.

    Heffron, R. J., McCauley, D., & Sovacool, B. K. (2015). Resolving society’s energy trilemma through the energy justice metric. Energy Policy,87, 168–176.

    Google Scholar 

  8. 8.

    Harvey, M. (2014). The food-energy-climate change trilemma: Toward a socio-economic analysis. Theory Culture and Society,31, 155–182.

    Google Scholar 

  9. 9.

    Gent, D., & Tomei, J. (2017). Electricity in Central America: Paradigms, reforms and the energy trilemma. Progress in Development Studies,17, 116–130.

    Google Scholar 

  10. 10.

    Wyman, O. (2015). World energy trilemma: Priority actions on climate change and how to balance the trilemma. London: World Energy Council.

    Google Scholar 

  11. 11.

    IEA. (2014). FACTSHEET energy in Sub-Saharan Africa today (p. 2014). Paris: International Energy Agency.

    Google Scholar 

  12. 12.

    Ebhota, W. S., Eloka-Eboka, A. C., & Inambao, F. I. (2014). Energy sustainability through domestication of energy technologies in third world countries in Africa. Presented at the Industrial and Commercial Use of Energy (ICUE), 2014 International Conference on the Energy efficiency in buildings, Cape Town.

  13. 13.

    Ebhota, W. S., Eloka-Eboka, A. C., & Inambao, F. L. (2014). Energy sustainability through domestication of energy technologies in third world countries in Africa. Presented at the Industrial and Commercial Use of Energy (ICUE) 2014 International Conference.

  14. 14.

    Ebhota, W. S., & Inambao, F. L. (2016). Electricity insufficiency in Africa: A product of inadequate manufacturing capacity. African Journal of Science Technology Innovation and Development,8, 197–204.

    Google Scholar 

  15. 15.

    Ebhota, W. S., & Inambao, F. L. (2017). Facilitating greater energy access in rural and remote areas of Sub-Saharan Africa: Small hydropower. Energy and Environment,28, 316–329.

    Google Scholar 

  16. 16.

    Ebhota, W. S., & Tabakov, P. Y. (2017). Hydropower potentials and effects of poor manufacturing infrastructure on small hydropower development in Sub-Saharan Africa. International Journal of Energy Economics and Policy,7, 60–67.

    Google Scholar 

  17. 17.

    Victoria, C. (2017). The history of solar power. https://www.experience.com/advice/careers/ideas/the-history-of-solar-power/. Accessed 10 Mar 2018.

  18. 18.

    Shashwat Cleantech, (2016). The History of Solar. U. S. Department of Energy. https://medium.com/shashwat-clean-tech/the-history-of-solar-e6b7125b218c. Accessed 13 Mar 2018.

  19. 19.

    Baker, A.. (2016). A history of solar cells: How technology has evolved. https://www.solarpowerauthority.com/a-history-of-solar-cells/. Accessed 15 Mar 2018.

  20. 20.

    Go Green. (2018). Solar Energy history: Early history of solar power. https://www.go-green-solar-energy.com/solar-energy-history.html. Accessed 10 Mar 2018.

  21. 21.

    Frank, R. (2016). Baths, and solar energy in the Roman Empire.

  22. 22.

    Ring, J. W. (1996). Windows, baths, and solar energy in the Roman Empire. American Journal of Archaeology,100, 717–724.

    Google Scholar 

  23. 23.

    Shahan. Z. (2013). 23 solar pioneers you should know. https://cleantechnica.com/2013/05/25/23-solar-pioneers-you-should-know/. Accessed 11 Mar 2018.

  24. 24.

    Chakrabarti, S. (201). Solar photocatalysis for environmental remediation. Energy and Resources Institute.

  25. 25.

    Mills, M. (2016). New metamaterial might change everything. https://www.e-wisdom.com/news/the-evolution-of-solar-cells-solar-power-without-sunlight/. Accessed 15 Mar 2018.

  26. 26.

    BP. (2017). Statistical review of world energy. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf. Accessed 10 Apr 2018.

  27. 27.

    Ritchie, H., & Roser, M. (2018). CO 2and other greenhouse gas emissions. Our world in data. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions. Accessed 12 Aug 2018.

  28. 28.

    WorldBank. (2018). CO 2emissions (kt). https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?end=2014&locations=ZG&start=1960&view=chart. Accessed 20 July 2018.

  29. 29.

    Roser, M. (2018). Economic growth. https://ourworldindata.org/economic-growth. Accessed 12 Aug 2018.

  30. 30.

    PBL. (2017). Global greenhouse gas emissions, per type of gas and source, including Lulucf. Netherlands Environmental Assessment Agency. http://www.pbl.nl/en/infographic/global-greenhouse-gas-emissions-per-type-of-gas-and-source-including-lulucf. Accessed 13 Mar 2018.

  31. 31.

    Olivier, J. G. J., Schure, K. M., & Peters, J. A. H. W. (2017). Trends in global CO 2and total greenhouse gas emissions. Summary of the 2017 report. The Hague: PBL Netherlands Environmental Assessment Agency.

    Google Scholar 

  32. 32.

    Schenk, A. (2016). A burning issue: Woodfuel, public health, land degradation and conservation in Sub-Saharan Africa: Wood energy fuelling the future. http://www.birdlife.org/africa/news/burning-issue-woodfuel-public-health-land-degradation-and-conservation-sub-saharan. Accessed 14 Apr 2018.

  33. 33.

    Amegah, A. K., & Agyei-Mensah, S. (2017). Urban air pollution in Sub-Saharan Africa: Time for action. Environmental Pollution,220, 738–743.

    Google Scholar 

  34. 34.

    WHO. (2018). Household air pollution and health: Key facts. http://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health. Accessed 19 June 2018.

  35. 35.

    Rode, H., Berg, A. M., & Rogers, A. (2011). Burn care in South Africa. Annals of Burns and Fire Disasters,24, 7–8.

    Google Scholar 

  36. 36.

    EC. (2011). California renewable energy overview and programs. http://www.energy.ca.gov/renewables/. Accessed 3 Dec 2017.

  37. 37.

    Eiden, T. J. (2013). Nuclear energy: The safe, clean, cost-effective alternative. The Objective Standard,8, 2014.

    Google Scholar 

  38. 38.

    World Energy Council. (2013). World energy resources: Solar. https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_8_Solar_revised.pdf. Accessed 15 Jan 2018.

  39. 39.

    U.S. (2015). Quadrennial technology review: Solar power technologies U.S.: U.S. Department of Energy.

  40. 40.

    Kammen, D. M., & Sunter, D. A. (2017). City-integrated renewable energy for urban sustainability. https://gspp.berkeley.edu/research/featured/city-integrated-renewable-energy-for-urban-sustainability. Accessed 30 Nov 2017.

  41. 41.

    NREL. (2016). Transforming energy through science. National Renewable Energy Laboratory, Office of Energy Efficiency and Renewable Energy, USA.

  42. 42.

    EMA. (2017). Solar photovoltaic systems. https://www.ema.gov.sg/Solar_Photovoltaic_Systems.aspx.

  43. 43.

    Smil, V. (2015). Power density: A key to understanding energy sources and uses. USA: MIT Press.

    Google Scholar 

  44. 44.

    Wei, H., Liu, J., & Yang, B. (2014). Cost-benefit comparison between domestic solar water heater (DSHW) and building integrated photovoltaic (Bipv) systems for households in urban China. Applied Energy,126, 47–55.

    Google Scholar 

  45. 45.

    Terziotti, L. T., Sweet, M. L., & McLeskey, J. T., Jr. (2012). Modeling seasonal solar thermal energy storage in a large urban residential building using TRNSYS 16. Energy and Buildings,45, 28–31.

    Google Scholar 

  46. 46.

    Cany, C., Mansilla, C., Mathonnière, G., & da Costa, P. (2018). Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix. Energy,150, 544–555.

    Google Scholar 

  47. 47.

    Jenkins, J. D., Zhou, Z., Ponciroli, R., Vilim, R. B., Ganda, F., de Sisternes, F., et al. (2018). The benefits of nuclear flexibility in power system operations with renewable energy. Applied Energy,222, 872–884.

    Google Scholar 

  48. 48.

    Kim, J. S., Boardman, R. D., & Bragg-Sitton, S. M. (2018). Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems. Applied Energy,228, 2090–2110.

    Google Scholar 

  49. 49.

    Orhan, M. F., Dincer, I., Rosen, M. A., & Kanoglu, M. (2012). Integrated hydrogen production options based on renewable and nuclear energy sources. Renewable and Sustainable Energy Reviews,16, 6059–6082.

    Google Scholar 

  50. 50.

    Suman, S. (2018). Hybrid nuclear-renewable energy systems: A review. Journal of Cleaner Production,181, 166–177.

    Google Scholar 

  51. 51.

    Suna, D., & Resch, G. (2016). Is nuclear economical in comparison to renewables? Energy Policy,98, 199–209.

    Google Scholar 

  52. 52.

    Deshmukh, M., & Deshmukh, S. (2008). Modeling of hybrid renewable energy systems. Renewable and Sustainable Energy Reviews,12, 235–249.

    Google Scholar 

  53. 53.

    Jung, J., & Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews,75, 180–191.

    Google Scholar 

  54. 54.

    Sawle, Y., Gupta, S. C., & Bohre, A. K. (2017). Socio-techno-economic design of hybrid renewable energy system using optimization techniques. Renewable Energy,11, 21.

    Google Scholar 

  55. 55.

    Sawle, Y., Gupta, S. C., & Bohre, A. K. (2018). Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system. Renewable and Sustainable Energy Reviews,81, 2217–2235.

    Google Scholar 

  56. 56.

    Wang, X., Palazoglu, A., & El-Farra, N. H. (2015). Operational optimization and demand response of hybrid renewable energy systems. Applied Energy,143, 324–335.

    Google Scholar 

  57. 57.

    Park, S., Han, G. D., Koo, J., Choi, H. J., & Shim, J. H. (2019). Profitable production of stable electrical power using wind-battery hybrid power systems: A case study from Mt. Taegi, South Korea. International Journal of Precision Engineering and Manufacturing-Green Technology,13, 1.

    Google Scholar 

  58. 58.

    Wang, X., Palazogluy, A., & El-Farra, N. H. (2014). Operation of residential hybrid renewable energy systems: Integrating forecasting, optimization and demand response. Presented at the American Control Conference (ACC), Oregon, USA, Portland.

  59. 59.

    Mohammed, Y. S., Mustafa, M. W., & Bashir, N. (2014). Hybrid renewable energy systems for off-grid electric power: Review of substantial issues. Renewable and Sustainable Energy Reviews,35, 527–539.

    Google Scholar 

  60. 60.

    Shaahid, S. M., & Elhadidy, M. A. (2003). Opportunities for utilization of stand-alone hybrid (photovoltaic + diesel + battery) power systems in hot climates. Renewable Energy,28, 1741–1753.

    Google Scholar 

  61. 61.

    Shaahid, S. M., & Elhadidy, M. A. (2004). Prospects of autonomous/stand-alone hybrid (photo-voltaic + diesel + battery) power systems in commercial applications in hot regions. Renewable Energy,29, 165–177.

    Google Scholar 

  62. 62.

    Kim, J.-A., & Crittenden, J. (2017). The case study of combined cooling heat and power and photovoltaic systems for building customers using homer software. Electric Power Systems Research,143, 490–502.

    Google Scholar 

  63. 63.

    Shahzad, M. K., Zahid, A., Ur Rashid, T., Rehan, M. A., Ali, M., & Ahmad, M. (2017). Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using homer software. Renewable Energy,106, 264–273.

    Google Scholar 

  64. 64.

    Zahboune, H., Zouggar, S., Krajacic, G., Varbanov, P. S., Elhafyani, M., & Ziani, E. (2016). Optimal hybrid renewable energy design in autonomous system using modified electric system cascade analysis and homer software. Energy Conversion and Management,126, 909–922.

    Google Scholar 

  65. 65.

    Brivio, C., Moncecchi, M., Mandelli, S., & Merlo, M. (2017). A novel software package for the robust design of off-grid power systems. Journal of Cleaner Production,166, 668–679.

    Google Scholar 

  66. 66.

    Markovic, D., Cvetkovic, D., & Masic, B. (2011). Survey of software tools for energy efficiency in a community. Renewable and Sustainable Energy Reviews,15, 4897–4903.

    Google Scholar 

  67. 67.

    Mills, & Al-Hallaj, S. (2004). Simulation of hydrogen-based hybrid systems using hybrid2. International Journal of Hydrogen Energy,29, 991–999.

    Google Scholar 

  68. 68.

    Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews,32, 192–205.

    Google Scholar 

  69. 69.

    Yang, H., Zhou, W., Lu, L., & Fang, Z. (2008). Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Solar Energy,82, 354–367.

    Google Scholar 

  70. 70.

    Zhou, W., Yang, H., & Fang, Z. (2007). A novel model for photovoltaic array performance prediction. Applied Energy,84, 1187–1198.

    Google Scholar 

  71. 71.

    Arul, P. G., Ramachandaramurthy, V. K., & Rajkumar, R. K. (2015). Control strategies for a hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews,42, 597–608.

    Google Scholar 

  72. 72.

    Yang, H., Wei, Z., & Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar-wind power generation system. Applied Energy,86, 163–169.

    Google Scholar 

  73. 73.

    Markvart, T., Fragaki, A., & Ross, J. N. (2006). PV system sizing using observed time series of solar radiation. Solar Energy,80, 46–50.

    Google Scholar 

  74. 74.

    Al Essa, M. J. M. (2018). Management of charging cycles for grid-connected energy storage batteries. Journal of Energy Storage,18, 380–388.

    Google Scholar 

  75. 75.

    Bracco, S., Delfino, F., Trucco, A., & Zin, S. (2018). Electrical storage systems based on sodium/nickel chloride batteries: A mathematical model for the cell electrical parameter evaluation validated on a real smart microgrid application. Journal of Power Sources,399, 372–382.

    Google Scholar 

  76. 76.

    Pandžić, H. (2018). Optimal battery energy storage investment in buildings. Energy and Buildings,175, 189–198.

    Google Scholar 

  77. 77.

    Weitzel, T., Schneider, M., Glock, C. H., Löber, F., & Rinderknecht, S. (2018). Operating a storage-augmented hybrid microgrid considering battery aging costs. Journal of Cleaner Production,188, 638–654.

    Google Scholar 

  78. 78.

    Zhang, C., Wei, Y.-L., Cao, P.-F., & Lin, M.-C. (2018). Energy storage system: Current studies on batteries and power condition system. Renewable and Sustainable Energy Reviews,82, 3091–3106.

    Google Scholar 

  79. 79.

    Wikipedia contributors. (2018). Hybrid renewable energy system. In: Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Hybrid_renewable_energy_system&oldid=818318161. Accessed 17 Mar 2018.

  80. 80.

    Renewable Solar Energy. (2017). Hybrid renewable energy. http://renewable-solarenergy.com/hybrid-renewable-energy.html. Accessed 17 Mar 2018.

  81. 81.

    Bhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M., & Ahn, S.-H. (2015). Optimization of hybrid renewable energy power systems: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,2, 99–112.

    Google Scholar 

  82. 82.

    Carcia, P. F., McLean, R. S., & Hegedus, S. (2010). Encapsulation of Cu(InGa)Se2 solar cell with Al2O3 thin-film moisture barrier grown by atomic layer deposition. Solar Energy Materials and Solar Cells,94, 2375–2378.

    Google Scholar 

  83. 83.

    Ahmad, E. (1995). Growth and characterisation of Cu (In, Ga)Se 2thin films for solar cell applications. UK: University of Salford.

    Google Scholar 

  84. 84.

    James, T., Goodrich, A., Woodhouse, M., Margolis, R., & Ong, S. (2011). Building-integrated photovoltaics (BIPV) in the residential sector: An analysis of installed rooftop system prices. Contract,303, 275–3000.

    Google Scholar 

  85. 85.

    DTU Energy. (2018). Solar cellsthe three generations. http://www.plasticphotovoltaics.org/lc/lc-solarcells/lc-introduction.html.

  86. 86.

    Solar Facts and Advice. (2013). My advice: Understand the advantages, disadvantages of different solar cells and who the market leaders are. http://www.solar-facts-and-advice.com/solar-cells.html. Accessed 24 Apr 2018.

  87. 87.

    Snaith, H. J. (2013). Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. The Journal of Physical Chemistry Letters,4, 3623–3630.

    Google Scholar 

  88. 88.

    Sha, W. E. I., Ren, X., Chen, L., & Choy, W. C. H. (2015). The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters,106, 221104.

    Google Scholar 

  89. 89.

    Ogbomo, O. O., Amalu, E. H., Ekere, N. N., & Olagbegi, O. (2017). A review of photovoltaic module technologies for increased performance in tropical climate. Renewable and Sustainable Energy Reviews,75, 1225–1238.

    Google Scholar 

  90. 90.

    Fraunhofer Institute for Solar Energy Systems (ISE). (2016). 30.2 percent efficiencynew record for silicon-based multi-junction solar cell. https://www.ise.fraunhofer.de/en/press-media/press-releases/2016/30-2-percent-efficiency-new-record-for-silicon-based-multi-junction-solar-cell.html. Accessed 2 July 2018.

  91. 91.

    Fraunhofer Institute for Solar Energy Systems (ISE). (2018). Photovoltaics report.

  92. 92.

    Luria, J., Kutes, Y., Moore, A., Zhang, L., Stach, E. A., & Huey, B. D. (2016). Charge transport in Cdte solar cells revealed by conductive tomographic atomic force microscopy. Nature Energy,1, 16150.

    Google Scholar 

  93. 93.

    Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., et al. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy,2, 17032.

    Google Scholar 

  94. 94.

    Li, H.-Y., Liu, Y.-F., Duan, Y., Yang, Y.-Q., & Lu, Y.-N. (2015). Method for aluminum oxide thin films prepared through low temperature atomic layer deposition for encapsulating organic electroluminescent devices. Materials,8, 600.

    Google Scholar 

  95. 95.

    Kumar, S., & Katiyar, M. (2017). Thin film encapsulation at low temperature using combination of inorganic dyad layers and spray coated organic layer. Journal of Encapsulation and Adsorption Sciences,07(04), 9.

    Google Scholar 

  96. 96.

    Paolo, M., Luigi, V., & Aldo Di, C. (2015). The role of printing techniques for large-area dye sensitized solar cells. Semiconductor Science and Technology,30, 104003.

    Google Scholar 

  97. 97.

    Pern, J. (2008). Module encapsulation materials, processing and testing. https://www.nrel.gov/docs/fy09osti/44666.pdf. Accessed 7 Sep 2018.

  98. 98.

    Olsen, L. C. (2008). Barrier coatings for thin film solar cells final subcontract report. Richland: National Renewable Energy Laboratory.

    Google Scholar 

  99. 99.

    CSZ. (2017). Photovoltaic solar testing specifications. http://www.cszindustrial.com/Products/Custom-Designed-Chambers/Solar-Panel-Testing-Chamber/Solar-Testing-Specifications.aspx.

  100. 100.

    Grover, R., Srivastava, R., Rana, O., Mehta, D., & Kamalasanan, M. (2011). New organic thin-film encapsulation for organic light emitting diodes. Journal of Encapsulation and Adsorption Sciences,1, 23–28.

    Google Scholar 

  101. 101.

    Agroui, K., Jaunich, M., & Arab, A. H. (2016). Analysis techniques of polymeric encapsulant materials for photovoltaic modules: Situation and perspectives. Energy Procedia,93, 203–210.

    Google Scholar 

  102. 102.

    Jelle, B. P. (2016). Building integrated photovoltaics: A concise description of the current state of the art and possible research pathways. Energies,9, 2016.

    Google Scholar 

  103. 103.

    Duerinckx, F., & Szlufcik, J. (2002). Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride. Solar Energy Materials and Solar Cells,72, 246.

    Google Scholar 

  104. 104.

    Jung, K., Bae, J.-Y., Park, S. J., Yoo, S., & Bae, B.-S. (2011). High performance organic-inorganic hybrid barrier coating for encapsulation of OLEDs. Journal of Materials Chemistry,21, 1977–1983.

    Google Scholar 

  105. 105.

    Wenbin, N., Xianglin, L., Siva Krishna, K., Derrick Wenhui, F., Hongjin, F., Santosh, S., et al. (2015). Applications of atomic layer deposition in solar cells. Nanotechnology,26, 64001.

    Google Scholar 

  106. 106.

    Galagan, Y., & Andriessen, R. (2012). “Organic photovoltaics: Technologies and manufacturing. In V. Fthenakis (Ed.), Third generation photovoltaics (p. Ch. 3). Rijeka: InTech.

    Google Scholar 

  107. 107.

    Elrawemi, M. (2015). Metrology and characterisation of defects in thinfilm barrier layers employed in flexible photovoltaic modules. PhD, Mechanical Engineering, University of Huddersfield, UK.

  108. 108.

    Raymond, K. (2019). Roll-to -roll equipment for atmospheric atomic layer deposition for solar applications. https://www.aimcal.org/uploads/4/6/6/9/46695933/knaapen_abstract.pdf. Accessed 5 Apr 2018.

  109. 109.

    Puurunen, R. L. (2005). Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics,97, 121301.

    Google Scholar 

  110. 110.

    George, S. M. (2010). Atomic layer deposition: An overview. Chemical Reviews,110, 111–131.

    Google Scholar 

  111. 111.

    Karimaghaloo, A., Koo, J., Kang, H.-S., Song, S. A., Shim, J. H., & Lee, M. H. (2019). Nanoscale surface and interface engineering of solid oxide fuel cells by atomic layer deposition. International Journal of Precision Engineering and Manufacturing-Green Technology,27, 2019.

    Google Scholar 

  112. 112.

    Hayafuji, N., Eldallal, G. M., Dip, A., Colter, P. C., El-Masry, N. A., & Bedair, S. M. (1994). Atomic layer epitaxy of device quality AlGaAs and AlAs. Applied Surface Science,82–83, 18–22.

    Google Scholar 

  113. 113.

    Kessels, W. M. M., Hoex, B., & Sanden, M. C. M. V. D. (2008). Atomic layer deposition: Prospects for solar cell manufacturing. In 2008 33rd IEEE photovoltaic specialists conference, pp. 1–5.

  114. 114.

    Yasutoshi, O., Katsumi, K., Mitsuru, I., Akira, Y., & Makoto, K. (1995). Polycrystalline Cu(InGa)Se2 thin-film solar cells with ZnSe buffer layers. Japanese Journal of Applied Physics,34, 5949.

    Google Scholar 

  115. 115.

    Goetzberger, A., Knobloch, J., & Voss, B. (1998). Crystalline silicon solar cells. Chichester: Wiley.

    Google Scholar 

  116. 116.

    Inslee, J., & Hendricks, B. (2009). Apollo’s fire: Igniting America’s Clean Energy Economy (1st ed.). USA: Island Press.

    Google Scholar 

  117. 117.

    Goetzberger, A., & Hebling, C. (2000). Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells,62, 1–19.

    Google Scholar 

  118. 118.

    Antony, A. (2004). Preparation and characterisation of certain II–VI, I–III–VI2 semiconductor thin films and transparent conducting oxides. Kerala: Department of Physics, Cochin University of Science and Technology.

    Google Scholar 

  119. 119.

    Schubert, M. B., & Werner, J. H. (2006). Flexible solar cells for clothing. Materials Today,9, 42–50.

    Google Scholar 

  120. 120.

    Coonen, S. (2017). Building integrated photovoltaics. http://ayrintiteknolojileri.com.tr/yuklemedosyalari/file/duyurular/gunesenerjisi/ORNL-Coonen_BIPV.pdf. Accessed 15 Nov 2017.

  121. 121.

    Riha, S. C., Koegel, A. A., Emery, J. D., Pellin, M. J., & Martinson, A. B. F. (2017). Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics. ACS Applied Materials and Interfaces,9, 4667–4673.

    Google Scholar 

  122. 122.

    Hamilton, D. R., & Seidensticker, R. G. (1960). Propagation mechanism of germanium dendrites. Journal of Applied Physics,31, 1165–1168.

    Google Scholar 

  123. 123.

    Prasittichai, C., & Hupp, J. T. (2010). Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: Significant improvements in photovoltage via Al2O3 atomic layer deposition. The Journal of Physical Chemistry Letters,1, 1611–1615.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the National Research Foundation (NRF) of South Africa and Global Excellence Scholarship from the University of Johannesburg.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Williams S. Ebhota.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebhota, W.S., Jen, TC. Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 97–117 (2020). https://doi.org/10.1007/s40684-019-00101-9

Download citation

Keywords

  • CO2 emission
  • Fossil fuel
  • Renewable energy
  • Photovoltaic cell
  • Energy materials R&D
  • Atomic layer deposition
  • DSSCs
  • CIGS