Skip to main content
Log in

Important Considerations in Manufacturing of Natural Fiber Composites: A Review

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The paper overviews the essential considerations in the manufacturing process of natural fiber composites which influence the performance of biocomposites. The evaluation of thermal properties of composites matrix and natural fiber chemical composition and physical properties appears to be necessary as the initial screening factors before the manufacturing process of biocomposites. On the other hand, considerations on fiber composition, type of manufacturing process and parameter used are seen as other crucial significant factors that need to be focused during the manufacturing of biocomposites. Moreover, the treatment used in the manufacturing process such as alkali treatment and coupling agent utilization should also be highlighted as additional important measures for better performance of biocomposites. In this review, all significant factors that influence the performance outcome of natural fiber composites are highlighted to provide the base-line source of literature for the manufacturing and production of composites sample. It is expected that the findings from the present study could further enhance the performance of natural fiber composites and able to become the preferred alternative or replacement for petroleum-based polymer in various industrial and commercial applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Palumbo, M., Avellaneda, J., & Lacasta, A. (2015). Availability of crop by-products in Spain: New raw materials for natural thermal insulation. Resources, Conservation and Recycling, 99, 1–6.

    Google Scholar 

  2. Aldousiri, B., Alajmi, M., & Shalwan, A. (2013). Mechanical properties of palm fibre reinforced recycled HDPE. Advances in Materials Science and Engineering, 2013, 1–7.

    Google Scholar 

  3. Yun, I. S., Hwang, S. W., Shim, J. K., & Seo, K. H. (2016). A study on the thermal and mechanical properties of poly(butylene succinate)/thermoplastic starch binary blends. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(3), 289–296.

    Google Scholar 

  4. Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213.

    Google Scholar 

  5. Paglicawan, M. A., Kim, B. S., Basilia, B. A., Emolaga, C. S., Marasigan, D. D., & Maglalang, P. E. C. (2014). Plasma-treated abaca fabric/unsaturated polyester composite fabricated by vacuum-assisted resin transfer molding. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 241–246.

    Google Scholar 

  6. Balan, A. K., Parambil, S. M., Vakyath, S., Velayudhan, J. T., Naduparambath, S., & Etathil, P. (2017). Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: Effect of silane coupling agents on the mechanical and thermal properties of the composites. Journal of Materials Science, 52(11), 6712–6725.

    Google Scholar 

  7. Chabba, S., & Netravali, A. N. (2005). ‘Green’ composites Part 2: Characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites. Journal of Materials Science, 40(23), 6275–6282.

    Google Scholar 

  8. Alam, M. M., Ahmed, T., Haque, M. M., Gafur, M., & Kabir, A. H. (2008). Mechanical properties of natural fiber containing polymer composites. Polymer-Plastics Technology and Engineering, 48(1), 110–113.

    Google Scholar 

  9. Haque, M. M., Hasan, M., Islam, M. S., & Ali, M. E. (2009). Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresource Technology, 100(20), 4903–4906.

    Google Scholar 

  10. Sastra, H., Siregar, J., Sapuan, S., & Hamdan, M. (2006). Tensile properties of Arenga pinnata fiber-reinforced epoxy composites. Polymer-Plastics Technology and Engineering, 45(1), 149–155.

    Google Scholar 

  11. Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: A review. BioResources, 3(3), 929–980.

    Google Scholar 

  12. Theng, D., El Mansouri, N.-E., Arbat Pujolràs, G., Ngo, B., Delgado Aguilar, M., Pèlach Serra, M. À., et al. (2017). Fiberboards made from corn stalk thermo mechanical pulp and kraft lignin as a green adhesive. BioResources, 12(2), 2379–2393.

    Google Scholar 

  13. Tian, X., Wang, B., Wang, B., Li, J., & Chen, K. (2017). Structural characterization of lignin isolated from wheat-straw during the alkali cooking process. BioResources, 12(2), 2407–2420.

    Google Scholar 

  14. Lee, M. S., Seo, H. Y., & Kang, C. G. (2016). Comparative study on mechanical properties of CR340/CFRP composites through three point bending test by using theoretical and experimental methods. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 359–365.

    Google Scholar 

  15. Siregar, J. P. (2011). Effect of selected treatment on properties of pineapple leaf fibre reinforced high impact polystyrene composites. Thesis, Doctor of Philosophy, No. Universiti Putra Malaysia.

  16. Edhirej, A., Sapuan, S., Jawaid, M., & Zahari, N. I. (2017). Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers and Polymers, 18(1), 162–171.

    Google Scholar 

  17. Misri, S., Ishak, M., Sapuan, S., & Leman, Z. (2015). The effect of winding angles on crushing behavior of filament wound hollow kenaf yarn fibre reinforced unsaturated polyester composites. Fibers and Polymers, 16(10), 2266–2275.

    Google Scholar 

  18. Fairuz, A., Sapuan, S., Zainudin, E., & Jaafar, C. (2015). The effect of gelation and curing temperatures on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites. Fibers and Polymers, 16(12), 2645–2651.

    Google Scholar 

  19. Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B Engineering, 42(4), 856–873.

    Google Scholar 

  20. Valášek, P., Ruggiero, A., & Müller, M. (2017). Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Composites Part B: Engineering, 122, 79–88.

    Google Scholar 

  21. Valášek, P., D’Amato, R., Müller, M., & Ruggiero, A. (2018). Musa textilis cellulose fibres in biocomposites—An investigation of mechanical properties and microstructure. BioResources, 13(2), 3177–3194.

    Google Scholar 

  22. Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM Journal of the Minerals Metals and Materials Society, 58(11), 80–86.

    Google Scholar 

  23. Shalwan, A., & Yousif, B. (2013). In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials and Design, 48, 14–24.

    Google Scholar 

  24. Ahmad, F., Choi, H. S., & Park, M. K. (2015). A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering, 300(1), 10–24.

    Google Scholar 

  25. Sapuan, S., Mohamed, A., Siregar, J. P., & Ishak, M. (2011). Pineapple leaf fibers and PALF-reinforced polymer composites cellulose fibers: Bio-and nano-polymer composites (pp. 325–343). Berlin: Springer.

    Google Scholar 

  26. Siregar, J. P., Sapuan, S., Rahman, M., & Zaman, H. (2010). The effect of alkali treatment on the mechanical properties of short pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Journal of Food, Agriculture & Environment, 8(2), 1103–1108.

    Google Scholar 

  27. Chou, N. J., Ravi Saraf, S. P. K., & Tong, H.-M. (2010). Characterization of polymers (Series ed.). New York: Momentum Press.

  28. Smith, W. F., & Hashemi, J. (2011). Foundations of materials science and engineering. New York: McGraw-Hill.

    Google Scholar 

  29. Callister, W. D., Jr., & Rethwisch, D. G. (2012). Fundamentals of materials science and engineering: An integrated approach. London: Wiley.

    Google Scholar 

  30. Siregar, J. P., Sapuan, S., Rahman, M. Z. A., & Dahlan, K. Z. H. M. (2011). Thermogravimetric Analysis (TGA) and Differential Scanning Calometric (DSC) Analysis of Pineapple Leaf Fibre (PALF) Reinforced High Impact Polystyrene (HIPS) Composites. Pertanika Journal of Science and Technology, 19(1), 161–170.

    Google Scholar 

  31. Ruggiero, A., Valášek, P., & Müller, M. (2016). Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Composites Part B: Engineering, 104, 9–16.

    Google Scholar 

  32. Yousif, B., Shalwan, A., Chin, C., & Ming, K. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design, 40, 378–385.

    Google Scholar 

  33. Jamiluddin, J., Siregar, J. P., Sulaiman, A., Jalal, K. A. A., & Tezara, C. (2016). Study on properties of tapioca resin polymer. International Journal of Automotive and Mechanical Engineering (IJAME), 13(1), 3178–3189.

    Google Scholar 

  34. Vink, E. T., Rabago, K. R., Glassner, D. A., & Gruber, P. R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403–419.

    Google Scholar 

  35. Shih, Y.-F., Chang, W.-C., Liu, W.-C., Lee, C.-C., Kuan, C.-S., & Yu, Y.-H. (2014). Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 2039–2046.

    Google Scholar 

  36. George, J., Bhagawan, S., & Thomas, S. (1996). Thermogravimetric and dynamic mechanical thermal analysis of pineapple fibre reinforced polyethylene composites. Journal of Thermal Analysis, 47(4), 1121–1140.

    Google Scholar 

  37. Threepopnatkul, P., Kaerkitcha, N., & Athipongarporn, N. (2009). Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Composites Part B Engineering, 40(7), 628–632.

    Google Scholar 

  38. Li, X., Panigrahi, S., & Tabil, L. (2009). A study on flax fiber-reinforced polyethylene biocomposites. Applied Engineering in Agriculture, 25(4), 525–531.

    Google Scholar 

  39. Jamiluddin, J., Siregar, J., Tezara, C., Hamdan, M., & Sapuan, S. (2018). “Characterisation of cassava biopolymers and the determination of their optimum processing temperatures. Plastics, Rubber and Composites, 47(10), 447–457.

    Google Scholar 

  40. Rashid, B., Leman, Z., Jawaid, M., Ghazali, M. J., & Ishak, M. R. (2016). The mechanical performance of sugar palm fibres (ijuk) reinforced phenolic composites. International Journal of Precision Engineering and Manufacturing, 17(8), 1001–1008.

    Google Scholar 

  41. Liu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348–1368.

    Google Scholar 

  42. Molitoris, H., Moss, S., De Koning, G., & Jendrossek, D. (1996). Scanning electron microscopy of polyhydroxyalkanoate degradation by bacteria. Applied Microbiology and Biotechnology, 46(5), 570–579.

    Google Scholar 

  43. Gilbert, M., & Hybart, F. (1972). Effect of chemical structure on crystallization rates and melting of polymers: Part 1. Aromatic polyesters. Polymer, 13(7), 327–332.

    Google Scholar 

  44. Broutman, L., & McGarry, F. (1965). Fracture surface work measurements on glassy polymers by a cleavage technique. I. Effects of temperature. Journal of Applied Polymer Science, 9(2), 589–608.

    Google Scholar 

  45. Steller, R., & Meissner, W. (1998). Structure and properties of degradable polyolefin-starch blends. Polymer Degradation and Stability, 60(2–3), 471–480.

    Google Scholar 

  46. Su, R., Wang, K., Zhang, Q., Chen, F., & Fu, Q. (2010). Effect of melt temperature on the phase morphology, thermal behavior and mechanical properties of injection-molded PP/LLDPE blends. Chinese Journal of Polymer Science, 28(2), 249–255.

    Google Scholar 

  47. Neto, A. R. S., Araujo, M. A., Barboza, R. M., Fonseca, A. S., Tonoli, G. H., Souza, F. V., et al. (2015). Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products, 64, 68–78.

    Google Scholar 

  48. Neto, A. R. S., Araujo, M. A., Souza, F. V., Mattoso, L. H., & Marconcini, J. M. (2013). Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Industrial Crops and Products, 43, 529–537.

    Google Scholar 

  49. Jaafar, J., Siregar, J. P., Oumer, A. N., Hamdan, M. H. M., Tezara, C., & Salit, M. S. (2018). Experimental investigation on performance of short pineapple leaf fiber reinforced tapioca biopolymer composites. BioResources, 13(3), 6341–6355.

    Google Scholar 

  50. Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., & Bergado, D. (2010). Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydrate Polymers, 82(4), 1090–1096.

    Google Scholar 

  51. John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343–364.

    Google Scholar 

  52. Nanthaya, K., & Taweechai, A. (2014). A new approach to ‘‘Greening’’ plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials and Design, 55, 292–299.

    Google Scholar 

  53. Mohanty, S., & Nayak, S. K. (2006). Interfacial, dynamic mechanical, and thermal fiber reinforced behavior of MAPE treated sisal fiber reinforced HDPE composites. Journal of Applied Polymer Science, 102(4), 3306–3315.

    Google Scholar 

  54. Hargitai, H., Rácz, I., & Anandjiwala, R. D. (2008). Development of hemp fiber reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 21(2), 165–174.

    Google Scholar 

  55. Manaila, E., Stelescu, M. D., & Doroftei, F. (2015). Polymeric composites based on natural rubber and hemp fibers. Iranian Polymer Journal, 24(2), 135–148.

    Google Scholar 

  56. Khondker, O. A., Ishiaku, U. S., Nakai, A., & Hamada, H. (2005). Fabrication mechanical properties of unidirectional jute/PP composites using jute yarns by film stacking method. Journal of Polymers and the Environment, 13(2), 115–126.

    Google Scholar 

  57. Liu, L., Yu, J., Cheng, L., & Qu, W. (2009). Mechanical properties of poly(butylene succinate)(PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing, 40(5), 669–674.

    Google Scholar 

  58. Rana, A., Mandal, A., & Bandyopadhyay, S. (2003). Short jute fiber reinforced polypropylene composites: Effect of compatibiliser, impact modifier and fiber loading. Composites Science and Technology, 63(6), 801–806.

    Google Scholar 

  59. Gassan, J., & Bledzki, A. K. (2001). Thermal degradation of flax and jute fibers. Journal of Applied Polymer Science, 82(6), 1417–1422.

    Google Scholar 

  60. Xia, X., Shi, X., Liu, W., Zhao, H., Li, H., & Zhang, Y. (2017). Effect of flax fiber content on polylactic acid (PLA) crystallization in PLA/flax fiber composites. Iranian Polymer Journal, 26(9), 693–702.

    Google Scholar 

  61. Prasad, N., Agarwal, V. K., & Sinha, S. (2016). Banana fiber reinforced low-density polyethylene composites: Effect of chemical treatment and compatibilizer addition. Iranian Polymer Journal, 25(3), 229–241.

    Google Scholar 

  62. Sumaila, M., Amber, I., & Bawa, M. (2013). Effect of fiber length on the physical and mechanical properties of random oriented, nonwoven short banana (Musa balbisiana) fiber/epoxy composite. Cellulose, 62, 64.

    Google Scholar 

  63. Rout, J., Misra, M., Tripathy, S., Nayak, S., & Mohanty, A. (2001). The influence of fibre treatment on the performance of coir-polyester composites. Composites Science and Technology, 61(9), 1303–1310.

    Google Scholar 

  64. Shah, A. U. M., Sultan, M. T. H., Cardona, F., Jawaid, M., Talib, A. R. A., & Yidris, N. (2017). Thermal analysis of bamboo fibre and its composites. BioResources, 12(2), 2394–2406.

    Google Scholar 

  65. Yao, L., Wang, Y., Li, Y., & Duan, J. (2017). Thermal properties and crystallization behaviors of polylactide/redwood flour or bamboo fiber composites. Iranian Polymer Journal, 26(2), 161–168.

    Google Scholar 

  66. Wong, K., Zahi, S., Low, K., & Lim, C. (2010). Fracture characterisation of short bamboo fibre reinforced polyester composites. Materials and Design, 31(9), 4147–4154.

    Google Scholar 

  67. Mohanty, A., Khan, M., & Hinrichsen, G. (2000). Influence of chemical surface modification on the properties of biodegradable jute fabrics—polyester amide composites. Composites Part A: Applied Science and Manufacturing, 31(2), 143–150.

    Google Scholar 

  68. Azwa, Z., Yousif, B., Manalo, A., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424–442.

    Google Scholar 

  69. Joseph, P., Joseph, K., & Thomas, S. (1999). Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Composites science and Technology, 59(11), 1625–1640.

    Google Scholar 

  70. Dhakal, H., Zhang, Z., & Richardson, M. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67(7), 1674–1683.

    Google Scholar 

  71. Liu, W., Misra, M., Askeland, P., Drzal, L. T., & Mohanty, A. K. (2005). ‘Green’composites from soy based plastic and pineapple leaf fiber: Fabrication and properties evaluation. Polymer, 46(8), 2710–2721.

    Google Scholar 

  72. Valášek, P., D’Amato, R., Müller, M., & Ruggiero, A. (2018). Mechanical properties and abrasive wear of white/brown coir epoxy composites. Composites Part B: Engineering, 146, 88–97.

    Google Scholar 

  73. Devi, L. U., Bhagawan, S., & Thomas, S. (1997). Mechanical properties of pineapple leaf fiber-reinforced polyester composites. Journal of Applied Polymer Science, 64(9), 1739–1748.

    Google Scholar 

  74. Mohanty, A., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276(1), 1–24.

    Google Scholar 

  75. Khalil, H. S. A., Alwani, M. S., & Omar, A. K. M. (2007). Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 1(2), 220–232.

    Google Scholar 

  76. Duval, A., Bourmaud, A., Augier, L., & Baley, C. (2011). Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Materials Letters, 65(4), 797–800.

    Google Scholar 

  77. Rouison, D., Sain, M., & Couturier, M. (2006). Resin transfer molding of hemp fiber composites: Optimization of the process and mechanical properties of the materials. Composites Science and Technology, 66(7), 895–906.

    Google Scholar 

  78. Beg, M., & Pickering, K. (2008). Mechanical performance of Kraft fibre reinforced polypropylene composites: Influence of fibre length, fibre beating and hygrothermal ageing. Composites Part A: Applied Science and Manufacturing, 39(11), 1748–1755.

    Google Scholar 

  79. Park, J.-M., Quang, S. T., Hwang, B.-S., & DeVries, K. L. (2006). Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission. Composites Science and Technology, 66(15), 2686–2699.

    Google Scholar 

  80. Shibata, S., Cao, Y., & Fukumoto, I. (2005). Press forming of short natural fiber-reinforced biodegradable resin: Effects of fiber volume and length on flexural properties. Polymer Testing, 24(8), 1005–1011.

    Google Scholar 

  81. Athijayamani, A., Thiruchitrambalam, M., Natarajan, U., & Pazhanivel, B. (2009). Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Materials Science and Engineering A, 517(1), 344–353.

    Google Scholar 

  82. Liu, W., Drzal, L. T., Mohanty, A. K., & Misra, M. (2007). Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Composites Part B: Engineering, 38(3), 352–359.

    Google Scholar 

  83. Kengkhetkit, N., & Amornsakchai, T. (2012). Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Products, 40, 55–61.

    Google Scholar 

  84. Takagi, H., & Ichihara, Y. (2004). Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME International Journal Series A, 47(4), 551–555.

    Google Scholar 

  85. Aji, I. S., Zainudin, E. S., Khalina, A., Sapuan, S., & Khairul, M. (2011). Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. Journal of Reinforced Plastics and Composites, 30(6), 546–553.

    Google Scholar 

  86. Ranganathan, N., Oksman, K., Nayak, S. K., & Sain, M. (2016). Structure property relation of hybrid biocomposites based on jute, viscose and polypropylene: The effect of the fibre content and the length on the fracture toughness and the fatigue properties. Composites Part A: Applied Science and Manufacturing, 83, 169–175.

    Google Scholar 

  87. Amuthakkannan, P., Manikandan, V., Jappes, J. W., & Uthayakumar, M. (2013). Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Materials Physics and Mechanics, 16, 107–117.

    Google Scholar 

  88. Xia, K., & Langdon, T. G. (1994). The toughening and strengthening of ceramic materials through discontinuous reinforcement. Journal of materials Science, 29(20), 5219–5231.

    Google Scholar 

  89. Ma, X., Yu, J., & Kennedy, J. F. (2005). Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydrate Polymers, 62(1), 19–24.

    Google Scholar 

  90. Lee, B.-H., Kim, H.-J., & Yu, W.-R. (2009). Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers and Polymers, 10(1), 83–90.

    Google Scholar 

  91. George, J., Janardhan, R., Anand, J., Bhagawan, S., & Thomas, S. (1996). Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer, 37(24), 5421–5431.

    Google Scholar 

  92. El-Shekeil, Y., Sapuan, S., Abdan, K., & Zainudin, E. (2012). Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites. Materials & Design, 40, 299–303.

    Google Scholar 

  93. Mylsamy, K., & Rajendran, I. (2011). Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Materials and Design, 32(8), 4629–4640.

    Google Scholar 

  94. Hu, R., & Lim, J.-K. (2007). Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. Journal of Composite Materials, 41(13), 1655–1669.

    Google Scholar 

  95. Li, X., Tabil, L., Panigrahi, S., & Crerar, W. (2006). The influence of fiber content on properties of injection molded flax fiber-HDPE biocomposites. In 2006 ASAE annual meeting. American Society of Agricultural and Biological Engineers.

  96. Jacob, M., Thomas, S., & Varughese, K. T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64(7), 955–965.

    Google Scholar 

  97. Westman, M., Laddha, S., Fifield, L., Kalentzis, T., & Simmons, K. (2010). Natural fiber composites: A review. U.S. Department of Energy under Contract DE-AC05-76LD01830, Vol. PNNL-19220.

  98. Kalpakjian, S., & Schmid, S. R. (2014). Manufacturing engineering and technology. Singapore: Pearson.

    Google Scholar 

  99. Tungjitpornkull, S., & Sombatsompop, N. (2009). Processing technique and fiber orientation angle affecting the mechanical properties of E-glass fiber reinforced wood/PVC composites. Journal of Materials Processing Technology, 209(6), 3079–3088.

    Google Scholar 

  100. Zampaloni, M., Pourboghrat, F., Yankovich, S., Rodgers, B., Moore, J., Drzal, L., et al. (2007). Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Composites Part A: Applied Science and Manufacturing, 38(6), 1569–1580.

    Google Scholar 

  101. Bledzki, A. K., & Faruk, O. (2004). Wood fiber reinforced polypropylene composites: Compression and injection molding process. Polymer-Plastics Technology and Engineering, 43(3), 871–888.

    Google Scholar 

  102. Medina, L., Schledjewski, R., & Schlarb, A. K. (2009). Process related mechanical properties of press molded natural fiber reinforced polymers. Composites Science and Technology, 69(9), 1404–1411.

    Google Scholar 

  103. Panyasart, K., Chaiyut, N., Amornsakchai, T., & Santawitee, O. (2014). Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56, 406–413.

    Google Scholar 

  104. Zhong, J., Li, H., Yu, J., & Tan, T. (2011). Effects of natural fiber surface modification on mechanical properties of poly(lactic acid)(PLA)/sweet sorghum fiber composites. Polymer-Plastics Technology and Engineering, 50(15), 1583–1589.

    Google Scholar 

  105. Jumaidin, R., Sapuan, S., Jawaid, M., Ishak, M., & Sahari, J. (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 89, 575–581.

    Google Scholar 

  106. Yu, T., Ren, J., Li, S., Yuan, H., & Li, Y. (2010). Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing, 41(4), 499–505.

    Google Scholar 

  107. Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2008). Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Composite Interfaces, 15(2–3), 169–191.

    Google Scholar 

  108. Ibrahim, N. A., Hadithon, K. A., & Abdan, K. (2010). Effect of fiber treatment on mechanical properties of kenaf fiber-ecoflex composites. Journal of Reinforced Plastics and Composites, 29(14), 2192–2198.

    Google Scholar 

  109. Jaafar, J., Siregar, J. P., Piah, M. B. M., Cionita, T., Adnan, S., & Rihayat, T. (2018). Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. Journal of Polymers and the Environment, 26(11), 4271–4281.

    Google Scholar 

  110. Asim, M., Jawaid, M., Abdan, K., & Ishak, M. R. (2016). Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering, 13(3), 426–435.

    Google Scholar 

  111. Hamdan, M., Siregar, J., Bachtiar, D., Rejab, M., Samykano, M., Agung, E., et al. (2017). Effect of alkaline treatment on mechanical properties of woven ramie reinforced thermoset composite. In IOP conference series: Materials science and engineering. IOP Publishing.

  112. Lopattananon, N., Panawarangkul, K., Sahakaro, K., & Ellis, B. (2006). Performance of pineapple leaf fiber–natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science, 102(2), 1974–1984.

    Google Scholar 

  113. Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25–33.

    Google Scholar 

  114. Bachtiar, D., Sapuan, S., & Hamdan, M. (2008). The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials and Design, 29(7), 1285–1290.

    Google Scholar 

  115. Ahmad, I., Mosadeghzad, Z., Daik, R., & Ramli, A. (2008). The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes. Journal of Applied Polymer Science, 109(6), 3651–3658.

    Google Scholar 

  116. Cao, Y., Shibata, S., & Fukumoto, I. (2006). Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites Part A: Applied Science and Manufacturing, 37(3), 423–429.

    Google Scholar 

  117. Stocchi, A., Lauke, B., Vázquez, A., & Bernal, C. (2007). A novel fiber treatment applied to woven jute fabric/vinylester laminates. Composites Part A: Applied Science and Manufacturing, 38(5), 1337–1343.

    Google Scholar 

  118. Paul, A., Joseph, K., & Thomas, S. (1997). Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composites Science and Technology, 57(1), 67–79.

    Google Scholar 

  119. El-Sabbagh, A. (2014). Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites Part B: Engineering, 57, 126–135.

    Google Scholar 

  120. Siregar, J. P., Jaafar, J., Cionita, T., Jie, C. C., Bachtiar, D., Rejab, M. R. M., et al. (2019). The effect of maleic anhydride polyethylene on mechanical properties of pineapple leaf fibre reinforced polylactic acid composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 110–112.

    Google Scholar 

  121. Hamdan, M., Siregar, J., Rejab, M., Bachtiar, D., Jamiluddin, J., & Tezara, C. (2019). Effect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA matrix polymer composite. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 113–124.

    Google Scholar 

  122. Kim, H.-S., Kim, S., Kim, H.-J., & Yang, H.-S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, 451(1), 181–188.

    Google Scholar 

  123. Mohanty, S., Verma, S. K., & Nayak, S. K. (2006). Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Composites Science and Technology, 66(3), 538–547.

    Google Scholar 

  124. Yang, H.-S., Wolcott, M. P., Kim, H.-S., Kim, S., & Kim, H.-J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369–375.

    Google Scholar 

  125. Rana, A., Mandal, A., Mitra, B., Jacobson, R., Rowell, R., & Banerjee, A. (1998). Short jute fiber-reinforced polypropylene composites: Effect of compatibilizer. Journal of Applied Polymer Science, 69(2), 329–338.

    Google Scholar 

  126. Khalid, M., Ali, S., Abdullah, L., Ratnam, C., & Choong, S. T. (2006). Effect of MAPP as coupling agent on the mechanical properties of palm fiber empty fruit bunch and cellulose polypropylene biocomposites. International Journal of Engineering and Technology, 3(1), 79–84.

    Google Scholar 

  127. Mohanty, S., Nayak, S., Verma, S., & Tripathy, S. (2004). Effect of MAPP as a coupling agent on the performance of jute–PP composites. Journal of Reinforced Plastics and Composites, 23(6), 625–637.

    Google Scholar 

  128. Gassan, J., & Bledzki, A. K. (1997). The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 28(12), 1001–1005.

    Google Scholar 

  129. Malkapuram, R., Kumar, V., & Negi, Y. S. (2009). Recent development in natural fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 28, 10.

    Google Scholar 

  130. Fuqua, M., & Ulven, C. (2008). Characterization of polypropylene/corn fiber composites with maleic anhydride grafted polypropylene. Journal of Biobased Materials and Bioenergy, 2(3), 258–263.

    Google Scholar 

  131. Suarez, J. C. M., Coutinho, F. M., & Sydenstricker, T. H. (2003). SEM studies of tensile fracture surfaces of polypropylene—Sawdust composites. Polymer Testing, 22(7), 819–824.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thanks the Malaysian Ministry of Higher Education (Grant No. RDU140120) for funding the research through the Fundamental Research Grant Scheme (FRGS) with Grant Number FRGS/1/2014/TK04/UMP/02/4. The authors are also obliged to express their gratitude to Universiti Malaysia Pahang for generously providing essential laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Januar Parlaungan Siregar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaafar, J., Siregar, J., Mohd Salleh, S. et al. Important Considerations in Manufacturing of Natural Fiber Composites: A Review. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 647–664 (2019). https://doi.org/10.1007/s40684-019-00097-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00097-2

Keywords

Navigation