Skip to main content
Log in

Hybrid Manufacturing of Oxidation Resistant Cellulose Nanocrystals-Copper-Graphene Nanoplatelets Based Electrodes

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Novel green electrodes were fabricated through the combination of cellulose nanocrystals (CNC), graphene nanoplatelets (GNP) and copper precursors. Electrodes were produced by a hybrid manufacturing process that included vacuum filtration, intensive pulsed light (IPL) sintering, mechanical hot pressing and heat treatment to reduce the number of junctions and flatten the components into a parallel arrangement. Copper provides excellent electrical conductivity and cost efficiency, but it can be easily oxidized. CNC is a renewable material that acts as a strong binder, allowing the compaction of the electrodes and providing a surface for copper ions to be adsorbed. GNP prevents copper oxidation and acts as conductive bridges. This combination of processes and materials yielded decreases in electrical resistance, even after 5 days of heat treatment at 175 °C that would typically cause oxidation. At this temperature, carbonization of CNC began to occur. After applying a two percent strain to the electrodes, high CNC concentration electrodes maintained a similar electrical performance, whereas low CNC concentration electrodes exhibited a significant reduction in electrical conductivity. The ability to withstand elevated temperatures for long durations and external strains make the nanocomposite electrodes attractive for various applications such as electrodes, electrical devices and sensors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yin, Z., Lee, C., Cho, S., Yoo, J., Piao, Y., & Kim, Y. S. (2014). Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes. Small (Weinheim an der Bergstrasse, Germany),10(24), 5047–5052.

    Google Scholar 

  2. De Los Santos Valladares, L., Salinas, D. H., Dominguez, A. B., Najarro, D. A., Khondaker, S. I., Mitrelias, T., et al. (2012). Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films,520(20), 6368–6374.

    Article  Google Scholar 

  3. Li, J., Mayer, J. W., & Colgan, E. G. (1991). Oxidation and protection in copper and copper alloy thin films. Journal of Applied Physics,70(5), 2820–2827.

    Article  Google Scholar 

  4. Im, H.-G., Jung, S.-H., Jin, J., Lee, D., Lee, J., Lee, D., et al. (2014). Flexible transparent conducting hybrid film using a surface- embedded copper nanowire network: A highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano,8(10), 10973–10979.

    Article  Google Scholar 

  5. Cheng, Y., Wang, S., Wang, R., Sun, J., & Gao, L. (2014). Copper nanowire based transparent conductive films with high stability and superior stretchability. Journal of Materials Chemistry,2, 5309–5316.

    Article  Google Scholar 

  6. Singh, B. P., Nayak, S., Nanda, K. K., Jena, B. K., Bhattacharjee, S., & Besra, L. (2013). The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon,61, 47–56.

    Article  Google Scholar 

  7. Wang, F., Drzal, L. T., Qin, Y., & Huang, Z. (2015). Multifunctional graphene nanoplatelets/cellulose nanocrystals composite paper. Composites Part B: Engineering,79, 521–529.

    Article  Google Scholar 

  8. Daoush, W. M., Lim, B. K., Mo, C. B., Nam, D. H., & Hong, S. H. (2009). Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Materials Science and Engineering A,513–514, 247–253.

    Article  Google Scholar 

  9. Kadokawa, J., Murakami, M., & Kaneko, Y. (2008). A facile method for preparation of composites composed of cellulose and a polystyrene-type polymeric ionic liquid using a polymerizable ionic liquid. Composites Science and Technology,68(2), 493–498.

    Article  Google Scholar 

  10. Oshima, T., Kondo, K., Ohto, K., Inoue, K., & Baba, Y. (2008). Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. Reactive & Functional Polymers,68(1), 376–383.

    Article  Google Scholar 

  11. Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology,2(2), 197–213.

    Article  Google Scholar 

  12. Malla, P. B., Ravindranathan, P., Komarneni, S., Breval, E., Roy, R., Kirkland, A. I., et al. (1992). Reduction of copper acetate hydroxide hydrate interlayers in montmorillonite by a polyol process A new approach in the preparation of metal-supported catalysts. Journal of Materials Chemistry.,2(5), 559.

    Article  Google Scholar 

  13. Rojas, O. J., Montero, G. A., & Habibi, Y. (2009). Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. Journal of Applied Polymer Science,113(2), 927–935.

    Article  Google Scholar 

  14. Lu, P., & Hsieh, Y.-L. (2010). Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydrate Polymers,82(2), 329–336.

    Article  Google Scholar 

  15. George, J., & Sabapathi, S. N. (2015). Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl.,8, 45–54.

    Article  Google Scholar 

  16. Yim, C., Kockerbeck, Z. A., Jo, S. B., & Park, S. S. (2017). Hybrid copper–silver–graphene nanoplatelet conductive inks on PDMS for oxidation resistance under intensive pulsed light. ACS Applied Materials & Interfaces,9(42), 37160–37165.

    Article  Google Scholar 

  17. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., Song, J.-H., et al. (2014). Hybrid manufacturing in micro/nano scale: a review. International Journal of Precision Engineering and Manufacturing-Green Technology,1(1), 75–92.

    Article  Google Scholar 

  18. Miccoli, I., Edler, F., Pfnür, H., & Tegenkamp, C. (2015). The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter,27(22), 223201.

    Google Scholar 

  19. Ren, Y., Yan, N., Feng, J., Ma, J., Wen, Q., Li, N., et al. (2012). Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Materials Chemistry and Physics,136(2–3), 538–544.

    Article  Google Scholar 

  20. Wu, H., & Drzal, L. T. (2012). Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon.,50(3), 1135–1145.

    Article  Google Scholar 

  21. Hwang, H.-J., Joo, S.-J., & Kim, H.-S. (2015). Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering. ACS Applied Materials & Interfaces,7(45), 25413–25423.

    Article  Google Scholar 

  22. Amamou, W., Odenthal, P. M., Bushong, E. J., O’Hara, D. J., Kelly Luo, Y., van Baren, J., et al. (2015). Large area epitaxial germanane for electronic devices. 2D Mater,2(3), 35012.

    Article  Google Scholar 

  23. Sen Gupta, S., Manoj Siva, V., Krishnan, S., Sreeprasad, T. S., Singh, P. K., Pradeep, T., et al. (2011). Thermal conductivity enhancement of nanofluids containing graphene nanosheets. Journal of Applied Physics,110(8), 84302.

    Article  Google Scholar 

  24. Akhavan, O. (2010). The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon N Y.,48(2), 509–519.

    Article  MathSciNet  Google Scholar 

  25. Yu, H., Yan, C., & Yao, J. (2014). Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Advances,4(104), 59792–59802.

    Article  Google Scholar 

  26. Tang, M. M., & Bacon, R. (1964). Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon N Y.,2(3), 211–220.

    Article  Google Scholar 

  27. Kooti, M., & Matouri, L. (2010). Fabrication of nanosized cuprous oxide using fehling’s solution. Trans F Nanotechnol.,17(1), 73–78.

    Google Scholar 

  28. Lanje, A. S., Sharma, S. J., Pode, R. B., & Ningthoujam, R. S. (2010). Synthesis and optical characterization of copper oxide nanoparticles. Advances in Applied Science Research,1(2), 36–40.

    Google Scholar 

  29. Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., et al. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology.,60(1), 75–80.

    Article  Google Scholar 

  30. Inuwa, I. M., Hassan, A., Samsudin, S. A., Mohamad Kassim, M. H., & Jawaid, M. (2014). Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites. Polymer Composites,35(10), 2029–2035.

    Article  Google Scholar 

  31. Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon,47(9), 2281–2289.

    Article  Google Scholar 

  32. Theivasanthi, T., & Alagar, M. (2013). Konjac bio-molecules assisted, rod-spherical shaped lead nano powder synthesized by electrolytic process and its characterization studies. Nano Biomed Eng.,5(1), 11–19.

    Google Scholar 

  33. Shen, M.-Y., Chang, T.-Y., Hsieh, T.-H., Li, Y.-L., Chiang, C.-L., Yang, H., et al. (2013). Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. Journal of Nanomaterials,2013, 1–9.

    Google Scholar 

  34. Morales, J., Sánchez, L., Martín, F., Ramos-Barrado, J. R., & Sánchez, M. (2004). Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochimica Acta,49(26), 4589–4597.

    Article  Google Scholar 

  35. Evans, D. A., Seidel, D., Rueping, M., Lam, H. W., Jared, A., Shaw, T., et al. (2003). A new copper acetate-bis(oxazoline)-catalyzed, enantioselective henry reaction. Journal of the American Chemical Society,125(42), 12692–12693.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Alberta Innovates Technology Futures (AITF) and the Natural Sciences and Engineering Research Council (NSERC) for providing funding and support. This research was funded and supported by the Alberta Innovates CNC Challenge 2.0. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon S. Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, D., Yim, C. & Park, S.S. Hybrid Manufacturing of Oxidation Resistant Cellulose Nanocrystals-Copper-Graphene Nanoplatelets Based Electrodes. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 375–389 (2020). https://doi.org/10.1007/s40684-019-00093-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00093-6

Keywords

Navigation