Skip to main content
Log in

Nanoscale Surface and Interface Engineering of Solid Oxide Fuel Cells by Atomic Layer Deposition

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Recently, atomic layer deposition (ALD) has drawn much attention as a suitable tool for fabrication and engineering of high performance fuel cell catalysts and electrodes. Intrinsic merits of ALD enable synthesis of conformal and uniform film even at a sub-nm scale with excellent stoichiometry control and reproducibility. Leveraging the unique characteristics, ALD has proven its promising potential as a solution to achieve two major challenges of solid oxide fuel cell research: sluggish kinetics at low operational temperatures and long-term stability. In this review, recent efforts to address the challenges by the use of ALD-based functionalization of surfaces and interfaces of cell components are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid State Ionics, 135(1–4), 305–313.

    Google Scholar 

  2. Jacobson, A. J. (2010). Materials for solid oxide fuel cells. Chemistry of Materials, 22(3), 660–674.

    Google Scholar 

  3. Steele, B. C., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(November), 345–352.

    Google Scholar 

  4. Ding, D., Li, X., Lai, S. Y., Gerdes, K., & Liu, M. (2014). Enhancing SOFC cathode performance by surface modification through infiltration. Energy & Environmental Science, 7(2), 552.

    Google Scholar 

  5. Evans, A., Bieberle-Hütter, A., Rupp, J. L. M., & Gauckler, L. J. (2009). Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources, 194(1), 119–129.

    Google Scholar 

  6. Hibino, T. (2000). A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science, 288(5473), 2031–2033.

    Google Scholar 

  7. Wachsman, E. D., & Lee, K. T. (2011). Lowering the temperature of solid oxide fuel cells. Science New York, 334(6058), 935–939.

    Google Scholar 

  8. Oh, E.-O., Whang, C.-M., Lee, Y.-R., et al. (2012). Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD). Advanced Materials (Deerfield Beach, Fla.), 24(25), 3373–3377.

    Google Scholar 

  9. Shao, Z., & Haile, S. M. (2004). A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 431(7005), 170–173.

    Google Scholar 

  10. Yan, N., Xiao, C., & Kou, Y. (2010). Transition metal nanoparticle catalysis in green solvents. Coordination Chemistry Reviews, 254(9–10), 1179–1218.

    Google Scholar 

  11. Boccuzzi, F., Chiorino, A., & Manzoli, M. (2001). Au/TiO2 nanostructured catalyst: effects of gold particle sizes on CO oxidation at 90 K. Materials Science and Engineering C, 15(1–2), 215–217.

    Google Scholar 

  12. Gao, F., & Goodman, D. W. (2012). Model catalysts: Simulating the complexities of heterogeneous catalysts. Annual Review of Physical Chemistry, 63(1), 265–286.

    Google Scholar 

  13. Kung, M. C., Davis, R. J., & Kung, H. H. (2007). Understanding au-catalyzed low-temperature co oxidation. The Journal of Physical Chemistry C., 111(32), 11767–11775.

    Google Scholar 

  14. Lim, D. C., Lopez-Salido, I., Dietsche, R., Bubek, M., & Kim, Y. D. (2006). Size-selectivity in the oxidation behaviors of Au nanoparticles. Angewandte Chemie - International Edition., 45, 2413–2415.

    Google Scholar 

  15. Tsunoyama, H., Sakurai, H., Negishi, Y., & Tsukuda, T. (2005). Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. Journal of the American Chemical Society, 127(26), 9374–9375.

    Google Scholar 

  16. Hayashi, T., Tanaka, K., & Haruta, M. (1998). Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. Journal of Catalysis, 178, 566–575.

    Google Scholar 

  17. Janssens, T. V. W., Carlsson, A., Puig-Molina, A., & Clausen, B. S. (2006). Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts. Journal of Catalysis, 240, 108–113.

    Google Scholar 

  18. De Hosson, J. T. M., & Kooi, B. J. (2001). Metal/ceramic interfaces: a microscopic analysis. Surface and Interface Analysis, 31(7), 637–658.

    Google Scholar 

  19. Cargnello, M., Delgado Jaén, J. J., Hernández Garrido, J. C., et al. (2012). Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science, 337(6095), 713–717.

    Google Scholar 

  20. Adijanto, L., Sampath, A., Yu, A. S., et al. (2013). Synthesis and stability of Pd@CeO2 core–shell catalyst films in solid oxide fuel cell anodes. ACS Catalysis., 3(8), 1801–1809.

    Google Scholar 

  21. Sun, Y.-N., Qin, Z.-H., Lewandowski, M., et al. (2009). Monolayer iron oxide film on platinum promotes low temperature CO oxidation. Journal of Catalysis, 266(2), 359–368.

    Google Scholar 

  22. Strasser, P., Koh, S., Anniyev, T., et al. (2010). Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nature chemistry., 2(6), 454–460.

    Google Scholar 

  23. Ding, H., Virkar, A. V., Liu, M., & Liu, F. (2013). Suppression of Sr surface segregation in La1-xSrxCo1-yFeyO3-delta: a first principles study. Physical Chemistry Chemical Physics: PCCP, 15(2), 489–496.

    Google Scholar 

  24. Zhao, L., Drennan, J., Kong, C., Amarasinghe, S., & Jiang, S. P. (2014). Insight into surface segregation and chromium deposition on La 0.6Sr0.4Co0.2Fe0.8O3−δ cathodes of solid oxide fuel cells. J. Mater. Chem. A., 2(29), 11114–11123.

    Google Scholar 

  25. Ponce, S., Peña, M. A., & Fierro, J. L. G. (2000). Surface properties and catalytic performance in methane combustion of SR-substituted lanthanum manganites. Applied Catalysis, B: Environmental, 24(3–4), 193–205.

    Google Scholar 

  26. Kubicek, M., Limbeck, A., Frömling, T., Hutter, H., & Fleig, J. (2011). Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3−δ thin film electrodes. Journal of the Electrochemical Society, 158(6), B727.

    Google Scholar 

  27. Sase, M., Hermes, F., Yashiro, K., et al. (2008). Enhancement of oxygen surface exchange at the hetero-interface of (La, Sr)CoO3/(La, Sr)2CoO4 with PLD-layered films. Journal of the Electrochemical Society, 155(8), B793.

    Google Scholar 

  28. Sun, C., Hui, R., & Roller, J. (2009). Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 14(7), 1125–1144.

    Google Scholar 

  29. Druce, J., Téllez, H., & Hyodo, J. (2014). Surface segregation and poisoning in materials for low-temperature SOFCs. MRS Bulletin, 39(09), 810–815.

    Google Scholar 

  30. Xiong, Y., Yamaji, K., Horita, T., et al. (2009). Sulfur poisoning of SOFC cathodes. Journal of the Electrochemical Society, 156(5), B588.

    Google Scholar 

  31. Song, C., & Ma, X. (2003). New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. In Applied catalysis B: Environmental. pp 207–238

  32. Aguilar, L., Zha, S., Cheng, Z., Winnick, J., & Liu, M. (2004). A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels. Journal of Power Sources, 135(1–2), 17–24.

    Google Scholar 

  33. Liu, M., Wei, G. L., Luo, J. L., Sanger, A. R., & Chuang, K. T. (2003). Use of metal sulfides as anode catalysts in H2S-Air SOFCs. Journal of the Electrochemical Society, 150(8), A1025–A1029.

    Google Scholar 

  34. Wei, G.-L., Luo, J.-L., Sanger, A. R., & Chuang, K. T. (2004). High-performance anode for H2S-air SOFCs. Journal of the Electrochemical Society, 151(2), A232–A237.

    Google Scholar 

  35. Sasaki, K., Haga, K., Yoshizumi, T., et al. (2011). Chemical durability of solid oxide fuel cells: Influence of impurities on long-term performance. Journal of Power Sources, 196(22), 9130–9140.

    Google Scholar 

  36. Boldrin, P., Ruiz-Trejo, E., Mermelstein, J., Bermúdez Menéndez, J. M., Ramirez Reina, T., & Brandon, N. P. (2016). Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chemical Reviews, 116(22), 13633–13684.

    Google Scholar 

  37. Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis, A: General, 212(1–2), 17–60.

    Google Scholar 

  38. Zhao, S., Wang, Y., Dong, J., et al. (2016). Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy., 1, 16184.

    Google Scholar 

  39. Bartholomew, C. H. (1982). Carbon deposition in steam reforming and methanation. Catalysis Reviews., 24(1), 67–112.

    Google Scholar 

  40. Johnson, R. W., Hultqvist, A., & Bent, S. F. (2014). A brief review of atomic layer deposition: from fundamentals to applications. Materials Today, 17(5), 236–246.

    Google Scholar 

  41. George, S. M. (2010). Atomic layer deposition: An overview. Chemical Reviews, 110(1), 111–131.

    Google Scholar 

  42. Lee, Y. H., Chang, I., Cho, G. Y., et al. (2018). Thin film solid oxide fuel cells operating below 600 C: A review. International Journal of Precision Engineering and Manufacturing-Green Technology., 5(3), 441–453.

    Google Scholar 

  43. Cassir, M., Ringuedé, A., & Niinistö, L. (2010). Input of atomic layer deposition for solid oxide fuel cell applications. Journal of Materials Chemistry, 20(41), 8987.

    Google Scholar 

  44. Onn, T., Küngas, R., Fornasiero, P., Huang, K., & Gorte, R. (2018). Atomic layer deposition on porous materials: Problems with conventional approaches to catalyst and fuel cell electrode preparation. Inorganics, 6(1), 34.

    Google Scholar 

  45. Heil, S. B. S., Kudlacek, P., Langereis, E., Engeln, R., van de Sanden, M. C. M., & Kessels, W. M. M. (2006). In situ reaction mechanism studies of plasma-assisted atomic layer deposition of Al2O3. Applied Physics Letters, 89(13), 131505.

    Google Scholar 

  46. Levy, D. H., Nelson, S. F., & Freeman, D. (2009). Oxide electronics by spatial atomic layer deposition. Journal of Display Technology., 5(12), 484–494.

    Google Scholar 

  47. Werner, F., Veith, B., Tiba, V., et al. (2010). Very low surface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide. Applied Physics Letters, 97(16), 162103.

    Google Scholar 

  48. Poodt, P., Tiba, V., Werner, F., Schmidt, J., Vermeer, A., & Roozeboom, F. (2011). Ultrafast atomic layer deposition of alumina layers for solar cell passivation. Journal of the Electrochemical Society, 158(9), H937.

    Google Scholar 

  49. Chu, W. S., Kim, M. S., Jang, K. H., et al. (2016). From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: A review and perspective of paradigm shift. International Journal of Precision Engineering and Manufacturing - Green Technology, 3, 209–222.

    Google Scholar 

  50. Joe, H.-E., Yun, H., Jo, S.-H., Jun, M. B. G., & Min, B.-K. (2018). A review on optical fiber sensors for environmental monitoring. International Journal of Precision Engineering and Manufacturing-Green Technology., 5(1), 173–191.

    Google Scholar 

  51. Su, P.-C., Chao, C.-C., Shim, J. H., Fasching, R., & Prinz, F. B. (2008). Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters, 8(8), 2289–2292.

    Google Scholar 

  52. Shim, J. H., Chao, C., Huang, H., et al. (2007). Atomic layer deposition of Yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Materials, 19(15), 3850–3854.

    Google Scholar 

  53. Frison, R., Heiroth, S., Rupp, J. L. M., et al. (2013). Crystallization of 8 mol% yttria-stabilized zirconia thin-films deposited by RF-sputtering. Solid State Ionics, 232, 29–36.

    Google Scholar 

  54. Tsuchiya, M., Lai, B.-K., & Ramanathan, S. (2011). Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotechnology, 6(5), 282–286.

    Google Scholar 

  55. Kim, H., & Song, H. S. (2014). Design principles of co-planar interdigitated microelectrode arrays for solid-state ionic devices. International Journal of Precision Engineering and Manufacturing - Green Technology., 1(4), 317–322.

    Google Scholar 

  56. An, J., Kim, Y.-B., Park, J., Gür, T. M., & Prinz, F. B. (2013). Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm2 at 450 C. Nano Letters, 13(9), 4551–4555.

    Google Scholar 

  57. Baek, J. D., Yu, C.-C., & Su, P.-C. (2016). A silicon-based nanothin film solid oxide fuel cell array with edge reinforced support for enhanced thermal mechanical stability. Nano Letters, 16(4), 2413–2417.

    Google Scholar 

  58. Ji, S., Cho, G. Y. G. Y., Yu, W., Su, P.-C. P.-C., Lee, M. H. M. H., & Cha, S. W. S. W. (2015). Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Applied Materials & Interfaces, 7(5), 2998–3002.

    Google Scholar 

  59. Ballée, E., Ringuedé, A., Cassir, M., Putkonen, M., & Niinistö, L. (2009). Synthesis of a thin-layered ionic conductor, CeO2 −Y2O3, by atomic layer deposition in view of solid oxide fuel cell applications. Chemistry of Materials, 21(19), 4614–4619.

    Google Scholar 

  60. Duan, C., Kee, R. J., Zhu, H., et al. (2018). Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature, 557(7704), 217–222.

    Google Scholar 

  61. Choi, S., Kucharczyk, C. J., Liang, Y., et al. (2018). Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy., 3(3), 202–210.

    Google Scholar 

  62. Bae, K., Jang, D. Y., Choi, H. J., et al. (2017). Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nature Communications., 8, 14553.

    Google Scholar 

  63. Shim, J. H., Park, J. S., An, J., Gür, T. M., Kang, S., & Prinz, F. B. (2009). Intermediate-temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes. Chemistry of Materials, 21(14), 3290–3296.

    Google Scholar 

  64. Li, Y., Wang, S., & Su, P.-C. (2016). Proton-conducting micro-solid oxide fuel cells with improved cathode reactions by a nanoscale thin film gadolinium-doped ceria interlayer. Scientific Reports., 6, 22369.

    Google Scholar 

  65. Liu, Q. L., Khor, K. A., Chan, S. H., & Chen, X. J. (2006). Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process. Journal of Power Sources, 162(2), 1036–1042.

    Google Scholar 

  66. Zhang, X., Gazzarri, J., Robertson, M., Deces-Petit, C., & Kesler, O. (2008). Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte. Journal of Power Sources, 185(2), 1049–1055.

    Google Scholar 

  67. Lim, H.-T., & Virkar, A. V. (2009). Measurement of oxygen chemical potential in Gd2O3-doped ceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells. Journal of Power Sources, 192(2), 267–278.

    Google Scholar 

  68. Jee, Y., Cho, G. Y. G. Y., An, J., et al. (2014). High performance bi-layered electrolytes via atomic layer deposition for solid oxide fuel cells. Journal of Power Sources, 253, 114–122.

    Google Scholar 

  69. Kwon, T.-H., Lee, T., & Yoo, H.-I. (2011). Partial electronic conductivity and electrolytic domain of bilayer electrolyte Zr0.84Y0.16O1.92/Ce0.9Gd0.1O1.95. Solid State Ionics, 195(1), 25–35.

    Google Scholar 

  70. Myung, D.-H., Hong, J., Yoon, K., et al. (2012). The effect of an ultra-thin zirconia blocking layer on the performance of a 1-μm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell. Journal of Power Sources, 206, 91–96.

    Google Scholar 

  71. Leskelä, M., & Ritala, M. (2002). Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films, 409(1), 138–146.

    Google Scholar 

  72. Kilner, J. A., De Souza, R. A., & Fullarton, I. C. (1996). Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ionics, 86(2), 703–709.

    Google Scholar 

  73. Yasuda, I. (1994). Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. Journal of the Electrochemical Society, 141(5), 1268.

    Google Scholar 

  74. Chao, C.-C., Kim, Y. B., & Prinz, F. B. (2009). Surface modification of yttria-stabilized zirconia electrolyte by atomic layer deposition. Nano Letters, 9(10), 3626–3628.

    Google Scholar 

  75. Chao, C. C., Park, J. S., Tian, X., Shim, J. H., Gur, T. M., & Prinz, F. B. (2013). Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia. ACS Nano, 7(3), 2186–2191.

    Google Scholar 

  76. Fan, Z., An, J., Iancu, A., & Prinz, F. B. (2012). Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells. Journal of Power Sources, 218, 187–191.

    Google Scholar 

  77. Fan, Z., Chao, C.-C., Hossein-Babaei, F., & Prinz, F. B. (2011). Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition. Journal of Materials Chemistry, 21(29), 10903.

    Google Scholar 

  78. Lee, W., & Prinz, F. B. (2014). Localized charge transfer reactions near the Pt-YSZ interfaces using Kelvin probe microscopy. International Journal of Precision Engineering and Manufacturing-Green Technology., 1(3), 201–205.

    Google Scholar 

  79. Simner, S. P., Anderson, M. D., Coleman, J. E., & Stevenson, J. W. (2006). Performance of a novel La(Sr)Fe(Co)O3-Ag SOFC cathode. Journal of Power Sources, 161(1), 115–122.

    Google Scholar 

  80. Qiang, F., Sun, K., Zhang, N., Le, S., Zhu, X., & Piao, J. (2009). Optimization on fabrication and performance of A-site-deficient La0.58Sr0.4Co0.2Fe0.8O3-δ cathode for SOFC. Journal of Solid State Electrochemistry, 13(3), 455–467.

    Google Scholar 

  81. Jiang, S. P. (2003). Issues on development of (La, Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 124(2), 390–402.

    Google Scholar 

  82. Ding, D., Liu, M., Liu, Z., et al. (2013). Efficient electro-catalysts for enhancing surface activity and stability of SOFC cathodes. Advanced Energy Materials, 3(9), 1149–1154.

    Google Scholar 

  83. Ding, D., Zhu, W., Gao, J., & Xia, C. (2008). High performance electrolyte-coated anodes for low-temperature solid oxide fuel cells: Model and experiments. Journal of Power Sources, 179(1), 177–185.

    Google Scholar 

  84. O’Neill, B. J., Jackson, D. H. K., Lee, J., et al. (2015). Catalyst design with atomic layer deposition. ACS Catalysis, 5(3), 1804–1825.

    Google Scholar 

  85. Chang, I., Ji, S., Park, J., Lee, M. H., & Cha, S. W. (2015). Ultrathin YSZ coating on Pt cathode for high thermal stability and enhanced oxygen reduction reaction activity. Advanced Energy Materials, 5(10), 1402251.

    Google Scholar 

  86. Liu, K.-Y. K.-Y., Fan, L., Yu, C.-C., & Su, P.-C. (2015). Thermal stability and performance enhancement of nano-porous platinum cathode in solid oxide fuel cells by nanoscale ZrO2 capping. Electrochemistry Communications, 56, 65–69.

    Google Scholar 

  87. Karimaghaloo, A., Andrade, A. M., Grewal, S., Shim, J. H., & Lee, M. H. (2017). Mechanism of cathodic performance enhancement by a few-nanometer-thick oxide overcoat on porous Pt cathodes of solid oxide fuel cells. ACS Omega., 2(3), 806–813.

    Google Scholar 

  88. Takeda, Y. (1987). Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. Journal of the Electrochemical Society, 134(11), 2656.

    Google Scholar 

  89. Escudero, M. J., Aguadero, A., Alonso, J. A., & Daza, L. (2007). A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. Journal of Electroanalytical Chemistry, 611(1–2), 107–116.

    Google Scholar 

  90. Li, Y. K., Choi, H. J., Kim, H. K., et al. (2015). Nanoporous silver cathodes surface-treated by atomic layer deposition of Y:ZrO2 for high-performance low-temperature solid oxide fuel cells. Journal of Power Sources, 295, 175–181.

    Google Scholar 

  91. Neoh, K. C., Han, G. D., Kim, M., et al. (2016). Nanoporous silver cathode surface treated by atomic layer deposition of CeOx for low-temperature solid oxide fuel cells. Nanotechnology, 27(18), 185403.

    Google Scholar 

  92. Zhou, K., Fan, X., Wei, X., & Liu, J. (2017). The strategies of advanced cathode composites for lithium-sulfur batteries. Science China Technological Sciences., 60(2), 175–185.

    Google Scholar 

  93. Gong, Y., Palacio, D., Song, X., et al. (2013). Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Letters, 13(9), 4340–4345.

    Google Scholar 

  94. Gong, Y., Patel, R. L., Liang, X., et al. (2013). Atomic layer deposition functionalized composite SOFC cathode La0.6Sr0.4Fe0.8Co0.2O3-δ -Gd0.2Ce0.8O1.9: Enhanced Long-Term Stability. Chemistry of Materials, 25(21), 4224–4231.

    Google Scholar 

  95. Yu, A. S., Kungas, R., Vohs, J. M., & Gorte, R. J. (2013). Modification of SOFC cathodes by atomic layer deposition. Journal of the Electrochemical Society, 160(11), F1225–F1231.

    Google Scholar 

  96. Choi, H. J., Bae, K., Jang, D. Y., Kim, J. W., & Shim, J. H. (2015). Performance degradation of lanthanum strontium cobaltite after surface modification. Journal of the Electrochemical Society, 162(6), F622–F626.

    Google Scholar 

  97. Sehested, J. (2006). Four challenges for nickel steam-reforming catalysts. Catalysis Today, 111(1–2), 103–110.

    Google Scholar 

  98. Xie, C., Chen, Y., Engelhard, M. H., & Song, C. (2012). Comparative study on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbon fuel. ACS Catalysis., 2(6), 1127–1137.

    Google Scholar 

  99. Von Deak, D., Singh, D., Biddinger, E. J., et al. (2012). Investigation of sulfur poisoning of CNx oxygen reduction catalysts for PEM fuel cells. Journal of Catalysis, 285, 145–151.

    Google Scholar 

  100. González, M. G., Ponzi, E. N., Ferretti, O. A., Quincoces, C. E., Marecot, P., & Barbier, J. (2000). Studies on H2S adsorption and carbon deposition over Mo-Ni/Al2O3 catalysts. Adsorption Science & Technology, 18(6), 541–550.

    Google Scholar 

  101. Niakolas, D. K. (2014). Sulfur poisoning of Ni-based anodes for solid oxide fuel cells in H/C-based fuels. Applied Catalysis, A: General, 486, 123–142.

    Google Scholar 

  102. Xie, C., Chen, Y., Li, Y., Wang, X., & Song, C. (2010). Sulfur poisoning of CeO2-Al2O3-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures. Applied Catalysis, A: General, 390(1–2), 210–218.

    Google Scholar 

  103. Murata, K., Saito, M., Inaba, M., & Takahara, I. (2007). Hydrogen production by autothermal reforming of sulfur-containing hydrocarbons over Re-modified Ni/Sr/ZrO2 catalysts. Applied Catalysis, B: Environmental, 70(1–4), 509–514.

    Google Scholar 

  104. Gorte, R. J. (2010). Ceria in catalysis: From automotive applications to the water-gas shift reaction. AIChE Journal, 56(5), 1126–1135.

    Google Scholar 

  105. Luo, T. (2002). An examination of sulfur poisoning on Pd/ceria catalysts. Journal of Catalysis, 210(2), 397–404.

    Google Scholar 

  106. Andreeva, D., Ivanov, I., Ilieva, L., Sobczak, J. W., Avdeev, G., & Petrov, K. (2007). Gold based catalysts on ceria and ceria-alumina for WGS reaction (WGS Gold catalysts). Topics in Catalysis, 44(1–2), 173–182.

    Google Scholar 

  107. Jeong, H., Kim, J. W., Park, J., et al. (2016). Bimetallic nickel/ruthenium catalysts synthesized by atomic layer deposition for low-temperature direct methanol solid oxide fuel cells. ACS Applied Materials & Interfaces, 8(44), 30090–30098.

    Google Scholar 

  108. Jeong, H. J., Kim, J. W., Bae, K., Jung, H., & Shim, J. H. (2015). Platinum–ruthenium heterogeneous catalytic anodes prepared by atomic layer deposition for use in direct methanol solid oxide fuel cells. ACS Catalysis., 5(3), 1914–1921.

    Google Scholar 

  109. Jeong, H. J., Kim, J. W., Jang, D. Y., & Shim, J. H. (2015). Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells. Journal of Power Sources, 291, 239–245.

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support from the NSF CAREER Award (DMR 1753383) and the Korea Institute of Industrial Technology (KITECH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hwan Lee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimaghaloo, A., Koo, J., Kang, HS. et al. Nanoscale Surface and Interface Engineering of Solid Oxide Fuel Cells by Atomic Layer Deposition. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 611–628 (2019). https://doi.org/10.1007/s40684-019-00090-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00090-9

Keywords

Navigation