Skip to main content
Log in

Quantification of the Energy Flows During Ultrasonic Wire Bonding Under Different Process Parameters

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Despite of its wide and long-term application for interconnections in the field of microelectronics packaging, a quantitative understanding on the mechanisms of ultrasonic (US) wire bonding is still lacked. In this work, the energy flows from the electrical input energy to the different mechanisms during the US bonding process are quantified based on real-time observations via which the relative motions at the wire/substrate and the wire/tool interfaces can be detected. The relative motions at the two interfaces are proved to be caused by both the continuous plastic deformation and the US vibration. The normal force and US power interdependently affect the relative motion amplitudes. The deduced energy flows show that the energy from the transducer mainly flows to the vibration induced friction at the two interfaces and the microwelds formation, deformation and breakage. Despite of their significance to the process, the other mechanisms receive only little amount of energy. The impacts of the process parameters including normal force, US power and time on the energy flows are quantitatively investigated. A good coupling of the normal force and the US power guides more energy to the formation of microwelds while a long process time would increase the friction induced energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

FN :

The normal force

Fadd,N :

The additional normal force to deform the wire

u:

The instantaneous voltage

i:

The instantaneous current

t:

Process time

Rm :

The resistance of the transducer

Cm :

The capacitance of the transducer

Lm :

The inductance of the transducer

RVCA :

The resistance of the voice coil actuator

WNF :

The work conducted by the normal force

SN :

The tool tip displacement at the vertical direction

Dv :

The vibration induced relative motion distance at horizontal direction

Sp :

The plastic deformation induced relative motion displacement at horizontal direction

µ:

The friction coefficient

µmw :

The equivalent friction coefficient for microwelds formation, deformation and breakage

m:

The mass of the wire underneath the tool tip

vw :

The vibration speed of the wire

φ:

The cleaning coefficient

Etran loss :

The electrical loss energy to the transducer

Estorage :

The storage energy of the transducer

Etran input :

The electrical input energy to the transducer

EVCA loss :

The loss energy from the voice coil actuator

EVCA output :

The output energy from the voice coil actuator

Ev friction :

The vibration induced friction energy

Ep friction :

The plastic deformation induced friction energy

Ev, wire :

The kinetic energy for wire vibration

Wdefor, wire :

The work to deform the wire with additional force

ENF defor, wire :

The VCA energy for wire deformation

Eadd p friction :

The additional friction energy caused by the additional large normal force

Ev mw :

The vibration induced energy for microwelds formation, deformation and breakage

Ep mw :

The plastic deformation induced energy for microwelds formation, deformation and breakage

Eenvi loss :

The energy emitted to the environment

References

  1. Harman, G. G. (2010). “Wire bonding in microelectronics (3rd ed.). New York City: McGraw-Hill.

    Google Scholar 

  2. Ali, S., Hian, S., & Ang, B. (2014). The effects of wire geometry and wire layout on wire sweep performance using LQFP packages in transfer mold. International Journal of Precision Engineering and Manufacturing, 15(9), 1793–1799.

    Article  Google Scholar 

  3. Harthoorn, J.L., “Ultrasonic metal welding,” Doctoral dissertation, Technical University of Braunschweig, 1978.

  4. Long, Y., Twiefel, J., & Wallaschek, J. (2017). A review on the mechanisms of ultrasonic wedge-wedge bonding. Journal of Materials Processing Technology, 245, 241–258.

    Article  Google Scholar 

  5. Uthe, P. M. (1969). Variables affecting weld quality in ultrasonic aluminum wire bonding. Solid State Technol., 5, 72–77.

    Google Scholar 

  6. Joshi, K. C. (1971). The formation of ultrasonic bonds between metals. Welding Journal, 50(12), 840–848.

    Google Scholar 

  7. Winchell, V. H. I. I., & Berg, H. (1978). Enhancing ultrasonic bond development. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1(3), 211–219.

    Article  Google Scholar 

  8. Osterwald, F., “Verbindungsbildung beim UltraschallDraht-bonden: Einfluß der Schwingungsparameter und Modellvor-stellungen,” Dissertation, Technical University of Berlin, 1999.

  9. Gaul, H., Schneider-Ramelow, M., & Reichl, H. (2009). Analysis of the friction processes in ultrasonic wedge/wedge-bonding. Microsystem Technologies, 15(5), 771–775.

    Article  Google Scholar 

  10. Mayer, M., Schwizer, J., Paul, O., Bolliger, D., & Baltes, H. (1999). In situ ultrasonic stress measurements during ball bonding using integrated piezoresistive microsensors. In The Pacific Rim/ASME International Intersociety Electronic & Photonic Packaging Conference, Hawaii, USA, pp. 973–978.

  11. Gaul, H., Schneider-Ramelow, M., & Reichl, H. (2007). Hochge-schwindigkeitsaufnahmen der Werkzeug-und Drahtschwingung beim US-Wedge/Wedge-Bonden. Produktion von Leiterplatten und Systemen H, 8, 1529–1534.

    Google Scholar 

  12. Long, Y., Dencker, F., Wurz, M., Feldhoff, A., & Twiefel, J. (2016). A deeper understanding on the motion behaviors of wire during ultrasonic wedge-wedge bonding process. In: International symposium on microelectronics, Pasadena, USA, pp. 427–432.

  13. Long, Y., Dencker, F., Schneider, F., Emde, B., Li, C., Hermsdorf, J., Wurz, M., & Twiefel, J. (2016). Investigations on the oxide removal mechanism during ultrasonic wedge-wedge bonding process. In Electronics packaging technology conference, Singapore, pp. 405–410.

  14. Xu, T., Walker, T., Chen, R., Fu, J., & Luechinger, C. (2014) Advanced interconnect equipment and process development. In Electronics packaging technology conference, Singapore, pp. 564–569.

  15. Long, Y., Twiefel, J., Roth, J., & Wallaschek, J. (2015). Real-time observation of interface relative motion during ultrasonic wedge-wedge bonding process. In International symposium on microelectronics, Orlando, USA, pp. 419–424.

  16. Xu, T., Walker, T., Chen, R., Fu, J., & Luechinger, C. (2015). Bond tool life improvement for large copper wire bonding. In Electronics packaging and technology conference, Singapore, pp. 1–5.

  17. Unger, A., Sextro, W., Meyer, T., Eichwald, P., Althoff, S., Eacock, F., Hunstig, M., & Guth, K. (2015). Modeling of the stick-slip effect in heavy copper wire bonding to determine and reduce tool wear. In: Electronics packaging and technology conference, Singapore, pp. 1–4.

  18. Long, Y., Dencker, F., Isaak, A., Hermsdorf, J., Wurz, M., & Twiefel, J. (2018). Self-cleaning mechanisms in ultrasonic bonding of Al wire. Journal of Materials Processing Technology, 258, pp. 58–66.

    Article  Google Scholar 

  19. Blaha, F., & Langenecker, B. (1955). Dehnung von Zink-Kristallen unter Ultraschalleinwirkung. Naturwissenschaften, 42(20), 556.

    Article  Google Scholar 

  20. Blaha, F., & Langenecker, B. (1959). Plastizitätsuntersuchungen von Metallkristallen in Ultraschallfeld. Acta Metallurgica, 7(2), 93–100.

    Article  Google Scholar 

  21. Murali, S., Srikanth, N., Wong, Y. M., & Vath, C. J. (2007). Fundamentals of thermosonic copper wire bonding in microelectronics packaging. Journal of Materials Science, 42(2), 615–623.

    Article  Google Scholar 

  22. Maeda, M., Yamane, K., Matsusaka, S., & Takahashi, Y. (2009). Relation between vibration of wedge-tool and adhesion of wire to substrate during ultrasonic bonding. Quarterly Journal of the Japan Welding Society, 27(2), 200s–203s.

    Article  Google Scholar 

  23. Long, Y., Dencker, F., Isaak, A., Li, C., Schneider, F., Hermsdorf, J., Wurz, M., Twiefel, J. & Wallaschek, J. (2018). Revealing of ultrasonic wire bonding mechanisms via metal-glass bonding. Materials Science and Engineering: B, 236, pp. 189–196.

    Article  Google Scholar 

  24. Ille, I., & Twiefel, J. (2015). Model-based feedback control of an ultrasonic transducer for ultrasonic assisted turning using a novel digital controller. Physics Procedia, 70, 63–67.

    Article  Google Scholar 

  25. Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

    Article  Google Scholar 

  26. Gaul, H., Schneider-Ramelow, M., Lang, K. D., & Reichl, H. (2006). Predicting the shear strength of a wire bond using laser vibration measurements. Electronics System integration Technology Conference, Dresden, Germany, 2, 719–725.

    Google Scholar 

  27. Blau, P.J., “Friction Science and Technology,” CRC Press. 1995.

  28. Seppänen, H., Kurppa, R., Meriläinen, A., & Hæggström, E. (2013). Real time contact resistance measurement to determine when microwelds start to form during ultrasonic wire bonding. Microelectronic Engineering, 104, 114–119.

    Article  Google Scholar 

  29. Gaul, H., Schneider-Ramelow, M., & Reichl, H. (2010). Analytic model verification of the interfacial friction power in Al us w/w bonding on Au pads. IEEE Transactions on Components and Packaging Technologies, 33(3), 607–613.

    Article  Google Scholar 

  30. Antle, W. (1964). Friction technique for optimum thermocompression bonds. IEEE Transactions on Component Parts, 11(4), 25–29.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the Ministry of Science and Culture of Lower Saxony, Germany within the Multifunktionale Aktive und Reaktive Interfaces und Oberflächen (MARIO) program and Deutsche Forschungsgemeinschaft (DFG) program (TW75/8-1|WA564/40-1). Great thanks to Hesse Mechantronics GmbH for providing the bonding head HBK05 and Mr. Heiner Ramsbott from Vision Research Europe for providing the lens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyang Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Schneider, F., Li, C. et al. Quantification of the Energy Flows During Ultrasonic Wire Bonding Under Different Process Parameters. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 449–463 (2019). https://doi.org/10.1007/s40684-019-00061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00061-0

Keywords

Navigation